Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the finiteness of Pythagoras numbers of real meromorphic functions.

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

French Mathematical Society
Citations
Google Scholar

Citation

Abstract

We consider the 17(th) Hilbert Problem for global real analytic functions in a modified form that involves infinite sums of squares. Then we prove a local-global principle for a real global analytic function to be a sum of squares of global real meromorphic functions. We deduce that an affirmative solution to the 17(th) Hilbert Problem for global real analytic functions implies the finiteness of the Pythagoras number of the field of global real meromorphic functions, hence that of the field of real meromorphic power series. This measures the difficulty of the 17(th) Hilbert problem in the analytic case.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections