Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology

Loading...
Thumbnail Image

Full text at PDC

Publication date

1999

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad de Barcelona
Citations
Google Scholar

Citation

Abstract

We present some results on the mathematical treatment of a global twodimensional diffusive climate model. The model is based on a long time averaged energy balance and leads to a nonlinear parabolic equation for the averaged surface temperature. The spatial domain is a compact two-dimensional Riemannian manifold without boundary simulating the Earth. We prove the existence of bounded weak solutions via a fixed point argument. Although, the uniqueness of solutions may fail, in general, we give a uniqueness criterion in terms of the behaviour of the solution near its “ice caps”.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections