Aggregation Operators for Fuzzy Rationality Measures

dc.book.titleAggregation and Fusion of Imperfect Information
dc.contributor.authorCutello, Vincenzo
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.editorBouchon Meunier, Bernadette
dc.date.accessioned2023-06-20T21:10:22Z
dc.date.available2023-06-20T21:10:22Z
dc.date.issued1998
dc.description.abstractFuzzy rationality measures represent a particular class of aggregation operators. Following the axiomatic approach developed in [1,3,4,5] rationality of fuzzy preferences may be seen as a fuzzy property of fuzzy preferences. Moreover, several rationality measures can be aggregated into a global rationality measure. We will see when and how this can be done. We will also comment upon the feasibility of their use in real life applications. Indeed, some of the rationality measures proposed, though intuitively (and axiomatically) sound, appear to be quite complex from a computational point of view.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29160
dc.identifier.citationCutello, V., Montero, J.: Aggregation Operators for Fuzzy Rationality Measures. En: Bouchon-Meunier, B. (ed.) Aggregation and Fusion of Imperfect Information. pp. 98-105. Physica-Verlag HD, Heidelberg (1998)
dc.identifier.doihtt://dx.doi.org/10.1007/978-3-7908-1889-5_6
dc.identifier.isbn978-3-662-11073-7
dc.identifier.officialurlhttps//doi.org/10.1007/978-3-7908-1889-5_6
dc.identifier.relatedurlhttp://link.springer.com/chapter/10.1007/978-3-7908-1889-5_6
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60882
dc.issue.number12
dc.language.isoeng
dc.page.final105
dc.page.initial98
dc.page.total278
dc.publication.placeHeidelberg
dc.publisherPhysica-Verlag
dc.relation.ispartofseriesStudies in Fuzziness and Soft Computing
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.keywordAggregation rules
dc.subject.keywordFuzzy preferences
dc.subject.keywordDecision making.
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleAggregation Operators for Fuzzy Rationality Measuresen
dc.typebook part
dc.volume.number2
dcterms.referencesV. Cutello and J. Montero. An axiomatic approach to fuzzy rationality. In: K.C. Min, Ed., IFS A’93 (Korea Fuzzy Mathematics and Systems Society, Seou1, 1993 ), 634–636. V. Cutello and J. Montero. A characterization of rational amalgamation operations. International Journal of Approximate Reasoning 8: 325–344 (1993). V. Cutello and J. Montero. Equivalence of Fuzzy Rationality Measures. In: H.J. Zimmermann, Ed., EUFIT’93 ( Elite Foundation, Aachen, 1993 ), vol. 1, 344–350. V. Cutello and J. Montero. Fuzzy rationality measures. Fuzzy sets and Systems 62: 39–54 (1994). V. Cutello and J. Montero. Equivalence and Composition of Fuzzy rationality measures. Fuzzy sets and Systems, 1995. To Appear. J.C. Fodor and M. Roubens. Preference modelling and aggregation procedures with valued binary relations. In: R. Lowen and M. Roubens, Eds., Fuzzy Logic ( Kluwer Academic Press, Amsterdam, 1993 ), 29–38. J.C. Fodor and M. Roubens. Valued preference structures. European Journal of Operational Research 79: 277–286 (1994). J.C. Fodor and M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Pub., Dordrecht, 1994. M.R. Garey and D.S. Johnson. Computer and Intractability: a Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1978. M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, Chichester, 1984. L. Kitainik. Fuzzy Decision Procedures with Binary Relations- Kluwer Academic Pub., Boston, 1993. J. Montero. Arrow’s theorem under fuzzy rationality. Behavioral Science, 32: 267–273 (1987). J. Montero. Social welfare functions in a fuzzy environment. Kybernetes, 16: 241–245 (1987). CrossRef J. Montero. Rational aggregation rules. Fuzzy Sets and Systems 62: 267–276 (1994). J. Montero, J. Tejada and V. Cutello. A general model for deriving preference structures from data. European Journal of Operational Research,to appear. S.E. Orlovski. Calculus of Decomposable Properties, Fuzzy Sets and Decisions. Allerton Press, New York. 1994. U. Thole, H.J. Zimmermann and P. Zysno. On the suitability of minimum and product operators for the intersection of fuzzy sets. Fuzzy sets and Systems, 2: 167–180 (1979). R..R. Yager. On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18: 183–190 (1988). R.R. Yager. Connectives and quantifiers in fuzzy sets. Fuzzy sets and Systems, 40: 39–75 (1991). CrossRef R.R. Yager. Families of owa operators. Fuzzy sets and Systems, 59: 125–148 (1993). L.A. Zadeh. Similarity relations and fuzzy orderings. Information Science, 3: 177–200 (1971)
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero99.pdf
Size:
885.15 KB
Format:
Adobe Portable Document Format