Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A power structure over the Grothendieck ring of varieties

Loading...
Thumbnail Image

Full text at PDC

Publication date

2004

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

International Press
Citations
Google Scholar

Citation

Abstract

Let R be either the Grothendieck semiring (semigroup with multiplication) of complex quasi-projective varieties, or the Grothendieck ring of these varieties, or the Grothendieck ring localized by the class \L of the complex affine line. We define a power structure over these (semi)rings. This means that, for a power series A(t)=1+∑i=1∞[Ai]ti with the coefficients [Ai] from R and for [M]∈R, there is defined a series (A(t))[M], also with coefficients from R, so that all the usual properties of the exponential function hold. In the particular case A(t)=(1−t)−1, the series (A(t))[M] is the motivic zeta function introduced by M. Kapranov. As an application we express the generating function of the Hilbert scheme of points, 0-dimensional subschemes, on a surface as an exponential of the surface.

Research Projects

Organizational Units

Journal Issue

Description

The authors are thankful to Tomás L. Gómez for useful discussions. Partially supported by the grants RFBR–01–01–00739, INTAS–00–259, NWO–RFBR–047.008.005. The last two authors were partially supported by the grant BFM2001–1488–C02–01.

Keywords

Collections