A power structure over the Grothendieck ring of varieties
dc.contributor.author | Gusein-Zade, Sabir Medgidovich | |
dc.contributor.author | Luengo Velasco, Ignacio | |
dc.contributor.author | Melle Hernández, Alejandro | |
dc.date.accessioned | 2023-06-20T09:39:30Z | |
dc.date.available | 2023-06-20T09:39:30Z | |
dc.date.issued | 2004 | |
dc.description | The authors are thankful to Tomás L. Gómez for useful discussions. Partially supported by the grants RFBR–01–01–00739, INTAS–00–259, NWO–RFBR–047.008.005. The last two authors were partially supported by the grant BFM2001–1488–C02–01. | |
dc.description.abstract | Let R be either the Grothendieck semiring (semigroup with multiplication) of complex quasi-projective varieties, or the Grothendieck ring of these varieties, or the Grothendieck ring localized by the class \L of the complex affine line. We define a power structure over these (semi)rings. This means that, for a power series A(t)=1+∑i=1∞[Ai]ti with the coefficients [Ai] from R and for [M]∈R, there is defined a series (A(t))[M], also with coefficients from R, so that all the usual properties of the exponential function hold. In the particular case A(t)=(1−t)−1, the series (A(t))[M] is the motivic zeta function introduced by M. Kapranov. As an application we express the generating function of the Hilbert scheme of points, 0-dimensional subschemes, on a surface as an exponential of the surface. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16623 | |
dc.identifier.issn | 1073-2780 | |
dc.identifier.officialurl | http://intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0011/0001/a006/index.html | |
dc.identifier.relatedurl | http://www.intlpress.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50128 | |
dc.issue.number | 1 | |
dc.journal.title | Mathematical Research Letters | |
dc.language.iso | eng | |
dc.page.final | 57 | |
dc.page.initial | 49 | |
dc.publisher | International Press | |
dc.relation.projectID | RFBR–01–01–00739 | |
dc.relation.projectID | INTAS–00–259 | |
dc.relation.projectID | NWO–RFBR– 047.008.005 | |
dc.relation.projectID | BFM2001–1488–C02–01 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 511 | |
dc.subject.keyword | Algebraic-Varieties | |
dc.subject.keyword | Spaces | |
dc.subject.keyword | Geometry | |
dc.subject.ucm | Teoría de números | |
dc.subject.unesco | 1205 Teoría de Números | |
dc.title | A power structure over the Grothendieck ring of varieties | |
dc.type | journal article | |
dc.volume.number | 11 | |
dcterms.references | del Baño S. On the Chow motive of some moduli spaces. J. Reine Angew. Math. 532 (2001), 105–132 Berthelot P. Généralités sur les λ-anneaux. Théorie des intersections et théoréme de Riemann-Roch. Séminaire de Géométrie Algégrique du Bois-Marie, 1966–1967, (SGA 6). Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Lecture Notes in Math., Vol. 225. Springer-Verlag, Berlin-New York, 1971, 297–364. Denef J., Loeser F. Germs of arcs on singular algebraic varieties and motivic integration, Inventiones Mathematicae, v.135, no.1, (1999) 201–232. Denef J., Loeser F. Geometry on arc spaces of algebraic varieties. European Congress of Mathematics, Vol. I (Barcelona, 2000), 327–348, Progr. Math., 201, Birkhuser, Basel, 2001. Getzler E. Mixed Hodge structures of configuration spaces, preprint available at math.AG/9510018. Getzler, E. Resolving mixed Hodge modules on configuration spaces. Duke Math. J. 96 (1999), no. 1, 175–203. Göttsche L. On the motive of the Hilbert scheme of points on a surface, Mathematical Research Letters 8, (2001) 613–627. Kapranov M. The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint available at math.AG/0001005. Looijenga E. Motivic measures. Séminaire Bourbaki, Vol. 1999/2000. Astérisque, no.276, (2002) 267–297. Manin Yu. Generating functions in algebraic geometry and sums over trees. In: The Moduli Space of Curves, ed. by R. Dijkgraaf, C. Faber, G. van der Geer. Progress in Math., vol. 129. Birkhäuser, 1995, 401–417. Serre J.P. Les espaces fibrés algébriques. In: Seminaire C. Chevalley, 2e année: 1958. Anneaux de Chow et applications, 1-37. Stanley R.P. Enumerative Combinatorics. Vol.2. Cambridge Studies in Advanced Mathematics 62, 1999. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce | |
relation.isAuthorOfPublication | c5f952f6-669f-4e3d-abc8-76d6ac56119b | |
relation.isAuthorOfPublication.latestForDiscovery | 2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce |
Download
Original bundle
1 - 1 of 1