Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Burbea-Rao divergence based goodness-of-fit tests for multinomial models

dc.contributor.authorPardo Llorente, María del Carmen
dc.date.accessioned2023-06-20T17:07:15Z
dc.date.available2023-06-20T17:07:15Z
dc.date.issued1999-04
dc.descriptionThis work was supported by Grant DGES PB96-0635 and PR156/97-7159.
dc.description.abstractThis paper investigates a new family of statistics based on Burbea-Rao divergence for testing goodness-of-fit. Under the simple and composite null hypotheses the asymptotic distribution of these tests is shown to be chi-squared. For composite hypothesis, the unspecified parameters are estimated by maximum likelihood as well as minimum Burbea-Rao divergence.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17697
dc.identifier.doi10.1006/jmva.1998.1799
dc.identifier.issn0047-259X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0047259X98917997
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57802
dc.issue.number1
dc.journal.titleJournal of Multivariate Analysis
dc.language.isoeng
dc.page.final87
dc.page.initial65
dc.publisherAcademic Press
dc.relation.projectIDPB96-0635
dc.relation.projectIDPR156/97-7159
dc.rights.accessRightsopen access
dc.subject.cdu519.21
dc.subject.keywordGoodness-of-fit
dc.subject.keywordMinimum
dc.subject.keywordR Phi-divergence estimate
dc.subject.keywordPitman efficiency
dc.subject.keywordPower function.
dc.subject.ucmProbabilidades (Matemáticas)
dc.titleOn Burbea-Rao divergence based goodness-of-fit tests for multinomial models
dc.typejournal article
dc.volume.number69
dcterms.referencesM.S. Ali, D. Silvey, A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B, 28 (1966), pp. 131–140 T. Bednarski, T. Ledwina, A note on a biasedness of tests of fit. Math. Oper. Statist. Ser. Statist., 9 (1978), pp. 191–193 M.W. Birch, A new proof of the Pearson–Fisher theorem. Ann. of Math. Statist., 35 (1964), pp. 817–824 J. Burbea, C.R. Rao, On the convexity of some divergence measures based on Entropy functions. IEEE Trans. Inform. Theory, 28 (1982), pp. 489–495 J. Burbea, C.R. Rao, On the convexity of higher order Jensen differences based on entropy function. IEEE Trans. Inform. Theory, 28 (1982), pp. 961–963 J. Burbea, J-divergences and related topics, Encyclopedia Statist. Sci. 44 (1983), 290-296. W.G. Cochran, The Theχ2 test of goodness of fit, Ann. of Math. Statist., 23 (1952), pp. 315–345 A. Cohen, H.B. Sackrowitz, Unbiasedness of the chi-square, likelihood ratio, and other goodness of fit tests for the equal cell case. Ann. Statist., 3 (1975), pp. 959–964 N.Cressie,T.R.C. Read, Multinomial goodness of fit test. J. Roy. Statist. Soc. Ser. B, 46 (1984), pp. 440–464 I. Csiszár, Eine Informationtheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markhoffschen Ketten. Publ. Math. Inst. Hung. Acad. Sci. Ser. A, 8 (1963), pp. 85–108 J.J. Dik, M.C.M. Gunst, The distribution of general quadratic forms in normal variables. Statist. Neerlandica, 39 (1985), pp. 14–26 A.R. Eckler, A survey of coverage problems associated with point and area targets. Technometrics, 11 (1969), pp. 561–589 R.A. Fisher, The conditions under whichχ2. J. Roy. Statist. Soc., 87 (1924), pp. 442–450 C. Gini, Variabilitá e mutabilitá, Studi Economico–Giuridici della Facolta di Giurisprudenza dell Universitá di Cagliari, 1912 S.S.Gupta,Bibliography on the multivariate normal integrals and related topics.Ann. Math. Statist.,34(1963), pp. 829–838 M. E. Havrda, F. Charvát, Quantification method of classification processes: Concept of structuralα. Kybernetika, 3 (1975), pp. 30–35 J.P. Imhof, Computing the distribution of quadratic forms in normal variables. Biometrika, 48 (1961), pp. 419–426 D.R. Jensen, H. Solomon, A Gaussian approximation to the distribution of a definite quadratic form.J. Amer. Statist. Assoc., 67 (1972), pp. 898–902 N.L. Johnson, S. Kotz, Tables of distributions of positive definite quadratic forms in central normal variables. Sankhyā Ser. B, 30 (1968), pp. 303–314 J.N.Kapur,Measures of uncertainty, mathematical programming and physics. J. Ind. Soc. Agricultural Statist., 24 (1972), pp. 47–66 F. Liese, I. Vajda, Convex Statistical DistancesTeubner, Leipzig (1987) R. Modarres, R.W. Jernigan, Testing the equality of correlation matrices. Comm. Statist. Theory Methods, 21 (1992), pp. 2107–2125 D. Morales, L. Pardo, I. Vajda, Asymptotic divergence of estimates of discrete distributions. J. Statist. Plan. Inference (1995), pp. 347–369 L. Pardo, D. Morales, M. Salicrú, M.L. Menéndez, Rhφ-divergence statistics in applied categorical data analysis with stratified sampling. Utilitas Math., 44 (1993), pp. 145–164 M. C.Pardo,I.Vajda,About distances of discrete distributions satisfying the data process theorem of information theory. Trans. IEEE Inform. Theory, 43 (1997), pp. 1288–1293 M.C. Pardo, Asymptotic behaviour of an estimator based on Rao's divergence. Kybernetika, 33 (1997), pp. 489–504 K. Pearson, On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag., 50 (1900), pp. 157–172 C.R. Rao, Diversity and dissimilarity coefficients: an unified approach. J. Theoret. Pop. Biol., 21 (1982), pp. 24–43 J.N.K. Rao, A.J. Scott, The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness-of-fit and independence in two-way tables. J. Amer. Stat. Assoc., 76 (1981), pp. 221–230 T.R.C. Read, N. Cressie, Goodness of Fit Statistics for Discrete Multivariate DataSpringer-Verlag, New York (1988) F.E.Satterthwaite, An approximate distribution of estimates of variance components. Biometrics, 2 (1946), pp. 110–114 E.H. Simpson, Measurement of diversity. Nature, 163 (1949), p. 688 H. Solomon, Distribution of quadratic forms—tables and applications. Technical Report. Applied mathematics and statistics laboratories, Stanford University, Stanford, CA, 1960. I. Vajda, K. Vasek, Majorization, concave entropies, and comparison of experiments. Prob. Control Inform. Theory, 14 (1985), pp. 105–115 K. Zografos, K. Ferentinos, T. Papaioannou,ϕ-divergence statistics: Sampling properties and multinomial goodness of fit divergence tests. Comm. Statist. Theory Methods, 19 (1990), pp. 1785–1802
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoCarmen12.pdf
Size:
169.99 KB
Format:
Adobe Portable Document Format

Collections