Superadditivity of Quantum Relative Entropy for General States
Loading...
Download
Official URL
Full text at PDC
Publication date
2017
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE Xplore
Citation
A. Capel, A. Lucia, y D. Perez-Garcia, «Superadditivity of Quantum Relative Entropy for General States», IEEE Trans. Inform. Theory, vol. 64, n.o 7, pp. 4758-4765, jul. 2018, doi: 10.1109/TIT.2017.2772800.
Abstract
The property of superadditivity of the quantum relative entropy states that, in a bipartite system H AB = H A ⊗ H B , for every density operator ρ AB , one has D(ρ AB ||σ A ⊗ σ B )≥ D(ρ A ||σ A ) + D(ρB||σB). In this paper, we provide an extension of this inequality for arbitrary density operators σ AB . More specifically, we prove that α(σ AB )· D(ρ AB ||σ AB )≥D(ρ A ||σ A )+ D(ρ B ||σ B ) holds for all bipartite states ρ AB and σ AB , where α(σ AB ) = 1 + 2||σ A -1/2 ⊗ σ AB σ A -1/2 ⊗ σ B -1/2 - || AB || ∞ .