Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermodynamics of the Schwinger and Thirring models

dc.contributor.authorRuiz Ruiz, Fernando
dc.contributor.authorÁlvarez Estrada, Ramón F.
dc.date.accessioned2023-06-20T18:59:13Z
dc.date.available2023-06-20T18:59:13Z
dc.date.issued1987-05-15
dc.description© 1987 The American Physical Society. Partial support given by Plan Movilizador de Altas Energias (Proyecto de Investigacion AE86-0029), Comision Asesora de Investigacion Cientifica y Tecnica, Spain, is acknowledged. One of us (R.F.A.-E.) is grateful to the Council for International Exchange of Scholars for support through a Fulbright/MEC Grant, and to Professor B. Zurnino for the kind hospitality extended to him at the Theoretical Physics Group, Lawrence Berkeley Laboratory
dc.description.abstractThe thermodynamical partition functions for both the Schwinger and Thirring models are evaluated. The imaginary time formalism of quantum field theory at finite temperature and pathintegral methods are used. For the Schwinger model, the partition function displays two features: (i) no physical (transverse) photons exist in 1+1 dimensions; (ii) the theory also describes just free massive bosons. For the Thirring model, the partition function equals that for free massless fermions. The complete thermodynamical propagators and the energies per unit volume at finite temperature are also given.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipPlan Movilizador de Altas Energias
dc.description.sponsorshipComision Asesora de Investigacion Cientifica y Tecnica, Spain
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25501
dc.identifier.doi10.1103/PhysRevD.35.3161
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.35.3161
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59050
dc.issue.number10
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.page.final3166
dc.page.initial3161
dc.publisherAmerican Physical Soc
dc.relation.projectIDAE86-0029
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordAstronomy & Astrophysics
dc.subject.keywordPhysics
dc.subject.keywordParticles & Fields
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleThermodynamics of the Schwinger and Thirring models
dc.typejournal article
dc.volume.number35
dcterms.references1 H. A. Weldon, Phys. Rev. D 26, 1394 (1982). 2 H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo-Field Dynamics and Condensed States (North-Holland, Amsterdam, 1982). 3 J. F, Donoghue, B. R. Holstein, and R. W. Robinett, Phys. Rev. D 30, 2561 (1984); G. Peressutti and B. S. Skagerstam, Phys. Lett. 110B, 406 (1982); R. Tarrach, ibid. 133B, 259 (1983). 4 L. Dolan and R. Jackiw, Phys. Rev. D 9 3320 (1974). 5 A. J. Niemi and G. W. Semenoff, Nucl. Phys. B230, 181 (1984). 6 C. Bernard, Phys. Rev. D 9, 3312 (1974)~ 7 T. Matsubara, Frog. Theor. Phys. 14, 351 (1955). 8 Y. Takahashi and H. Umezawa, Collect. Phenom. 2, 55 (1975). 9 I. Ojima, in Progress in Quantum Field Theory, edited by H. Ezawa and S. Kamefuchi (North-Holland, Amsterdam, to be published). 10 The integration over A yields the l3-independent constant (see Ref. 6) det( p ) ~p ezp 2 d x 2 (x)D ' "(&)~„(&) penod)e P which has been absorbed into the normalization constant N of Eq. (2.3). Actually, the analogue of the representation (2.3) for 1 + 3 dimensions has been obtained a long time ago by E. S. Fradkin, Dok. Akad. Nauk. SSSR 125, 66 (1959) [Sov. Phys. Dokl. 4, 327 (1959)];Nucl. Phys. 12, 465 (1959). 11 H. M. Fried, Functional Methods and Models in Quantum Field Theory (MIT Press, Cambridge, MA, 1972). 12 P. D. Morley and M. B. Kislinger, Phys. Rep. 51, 63 (1979). 13 J. Schwinger, Phys. Rev. 128, 2425 (1962)~ 14 F. Ruiz Ruiz and R. F. Alvarez-Estrada, Phys. Lett. 180B, 153 (1986); 182B, 354 (1986). 15 G. G. MacFarlane, Philos. Mag. 40, 188 (1949); H. W. Braden, Phys. Rev. D 25, 1028 (1982). 16 A general zero-temperature Hamiltonian solution of the chiral Schwinger model, which, in particular, displays these facts for the ordinary (nonchiral) one is given in A. J. Niemi and G. W. Semenoff, Phys. Lett. 175B, 439 (1986). For a more general discussion of the boson-fermion relationship in two spacetime dimensions see, for instance, P. Garbaczewki, Phys. Rep. 36C, 65 (1978), and references therein
dspace.entity.typePublication
relation.isAuthorOfPublication00879a8b-f834-4645-adb9-01e259407707
relation.isAuthorOfPublication.latestForDiscovery00879a8b-f834-4645-adb9-01e259407707

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ruiz FR34libre.pdf
Size:
230.35 KB
Format:
Adobe Portable Document Format

Collections