Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rotation and gyration of finite two-dimensional modes

dc.contributor.authorWolf, Kurt Bernardo
dc.contributor.authorAlieva Krasheninnikova, Tatiana
dc.date.accessioned2023-06-20T10:48:40Z
dc.date.available2023-06-20T10:48:40Z
dc.date.issued2008-02-01
dc.description© 2008 Optical Society of America. T. Alieva acknowledges the Spanish Ministry of Education and Science for financial support (project TEC 2005- 02180/MIC). K. B. Wolf acknowledges the support of the SEP-CONACYT (México) project IN102603 “Óptica Matemática.” The authors are grateful to the UCM/ UNAM Collaboration Agreement for making this joint work possible. We appreciate Guillermo Krötzsch for assistance with the graphics, and Luis Edgar Vicent for Figs. 2 and 5.
dc.description.abstractHermite-Gauss and Laguerre-Gauss modes of a continuous optical field in two dimensions can be obtained from each other through paraxial optical setups that produce rotations in (four-dimensional) phase space. These transformations build the SU(2) Fourier group that is represented by rigid rotations of the Poincare sphere. In finite systems, where the emitters and the sensors are in N x N square pixellated arrays, one defines corresponding finite orthonormal and complete sets of two-dimensional Kravchuk modes. Through the importation of symmetry from the continuous case, the transformations of the Fourier group are applied on the finite modes.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.sponsorshipSEP-CONACYT (México)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27560
dc.identifier.doi10.1364/JOSAA.25.000365
dc.identifier.issn1084-7529
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.25.000365
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51265
dc.issue.number2
dc.journal.titleJournal of The Optical Society Of America A-Optics Image Science and Vision
dc.language.isoeng
dc.page.final370
dc.page.initial365
dc.publisherOptical Society of America
dc.relation.projectIDTEC 2005- 02180/MIC
dc.relation.projectIDIN102603
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordFractional fourier-transforms
dc.subject.keywordOrbital angular-momentum
dc.subject.keywordSystems
dc.subject.keywordOscillator
dc.subject.keywordGeometry
dc.subject.keywordDynamics
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleRotation and gyration of finite two-dimensional modes
dc.typejournal article
dc.volume.number25
dcterms.references1. R. Simon and K. B. Wolf, “Fractional Fourier transforms in two dimensions,” J. Opt. Soc. Am. A 17, 2368–2381 (2000). 2. M. J. Bastiaans and T. Alieva, “First-order optical systems with unimodular eigenvalues,” J. Opt. Soc. Am. A 23, 1875–1883 (2006). 3. T. Alieva and M. J. Bastiaans, “Orthonormal mode sets for the two-dimensional fractional Fourier transform,” Opt. Lett. 32, 1226–1228 (2007). 4. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator transform: properties and applications,” Opt. Express 15, 2190–2203 (2007). 5. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light” Progress in Optics, Vol. XXXIX, E. Wolf, ed. (Elsevier, 1999), pp. 294–374. 6. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B. Wolf, “Finite two-dimensional oscillator: I. The Cartesian model,” J. Phys. A 34, 9381–9398 (2001). 7. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Contraction of the finite one-dimensional oscillator,” Int. J. Mod. Phys. A 18, 317–327 (2003). 8. A. Frank and P. Van Isacker, Algebraic Methods in Molecular and Nuclear Structure Physics (Wiley, 1998); Sect. 1.1. 9. G. F. Calvo, “Wigner representation and geometric transformations of optical orbital angular momentum spatial modes,” Opt. Lett. 30, 1207–1209 (2005). 10. N. M. Atakishiyev and K. B. Wolf, “Fractional Fourier–Kravchuk transform,” J. Opt. Soc. Am. A 14, 1467–1477 (1997). 11. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Finite models of the oscillator,” Phys. Part. Nucl. 36, Suppl. 3, 521–555 (2005). 12. L. C. Biedenharn and J. D. Louck, “Angular momentum in quantum mechanics,” in Encyclopedia of Mathematics and Its Applications, Vol. 8, G.-C. Rota, ed. (Addison-Wesley, 1981), Sect. 3.6. 13. N. M. Atakishiyev and S. K. Suslov, “Difference analogs of the harmonic oscillator,” Theor. Math. Phys. 85, 1055–1062 (1991). 14. M. Krawtchouk, “Sur une généralization des polinômes d’Hermite,” C. R. Acad. Sci. Paris 189, 620–622 (1929). 15. N. M. Atakishiyev and K. B. Wolf, “Approximation on a finite set of points through Kravchuk functions,” Rev. Mex. Fís. 40, 366–377 (1994). 16. N. M. Atakishiyev, L. M. Vicent, and K. B. Wolf, “Continuous vs. discrete fractional Fourier transforms,” J. Comput. Appl. Math. 107, 73–95 (1999). 17. L. Barker, Ç. Çandan, T. Hakioğlu, and H. M. Ozaktas, “The discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform,” J. Phys. A 33, 2209–2222 (2000). 18. L. Barker, “Continuum quantum systems as limits of discrete quantum systems: II. State functions,” J. Phys. A 34, 4673–4682 (2001). 19. L. E. Ruiz-Vicent, “Análisis de señales discretas finitas mediante el modelo de oscilador finito de su_2_,” Ph. D. thesis (Universidad Autónoma del Estado de Morelos, Cuernavaca, 2007). 20. K. B. Wolf and G. Krötzsch, “Geometry and dynamics in the Fresnel transforms of discrete systems,” J. Opt. Soc. Am. A 24, 2568–2577 (2007). 21. K. B. Wolf and G. Krötzsch, “Geometry and dynamics of squeezing in finite systems,” J. Opt. Soc. Am. A 24, 2871–2878 (2007).
dspace.entity.typePublication
relation.isAuthorOfPublicationf1512137-328a-4bb6-9714-45de778c1be4
relation.isAuthorOfPublication.latestForDiscoveryf1512137-328a-4bb6-9714-45de778c1be4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AlievaT25libre.pdf
Size:
805.85 KB
Format:
Adobe Portable Document Format

Collections