Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rotation and gyration of finite two-dimensional modes

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Optical Society of America
Citations
Google Scholar

Citation

Abstract

Hermite-Gauss and Laguerre-Gauss modes of a continuous optical field in two dimensions can be obtained from each other through paraxial optical setups that produce rotations in (four-dimensional) phase space. These transformations build the SU(2) Fourier group that is represented by rigid rotations of the Poincare sphere. In finite systems, where the emitters and the sensors are in N x N square pixellated arrays, one defines corresponding finite orthonormal and complete sets of two-dimensional Kravchuk modes. Through the importation of symmetry from the continuous case, the transformations of the Fourier group are applied on the finite modes.

Research Projects

Organizational Units

Journal Issue

Description

© 2008 Optical Society of America. T. Alieva acknowledges the Spanish Ministry of Education and Science for financial support (project TEC 2005- 02180/MIC). K. B. Wolf acknowledges the support of the SEP-CONACYT (México) project IN102603 “Óptica Matemática.” The authors are grateful to the UCM/ UNAM Collaboration Agreement for making this joint work possible. We appreciate Guillermo Krötzsch for assistance with the graphics, and Luis Edgar Vicent for Figs. 2 and 5.

UCM subjects

Keywords

Collections