Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Local strong solutions of a parabolic system related to the Boussinesq approximation for buoyancy-driven flow with viscous heating

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorRakotoson, J.M.
dc.contributor.authorSchmidt, P.G.
dc.date.accessioned2023-06-20T10:52:17Z
dc.date.available2023-06-20T10:52:17Z
dc.date.issued2008
dc.description.abstractWe propose a modification of the classical Navier-Stokes-Boussinesq system of equations, which governs buoyancy-driven flows of viscous, incompressible fluids. This modification is motivated by unresolved issues regarding the global solvability of the classical system in situations where viscous heating cannot be neglected. A simple model problem leads to a coupled system of two parabolic equations with a source term involving the square of the gradient of one of the unknowns. In the present paper, we establish the local-in-time existence and uniqueness of strong solutions for the model problem. The full system of equations and the global-in-time existence of weak solutions will be addressed in forthcoming work.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGISGPI (Spain)
dc.description.sponsorshipDGUIC of the CAM and the UCM
dc.description.sponsorshipPrograma de Visitantes Distinguidos, Grupo Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30197
dc.identifier.issn1079-9389
dc.identifier.officialurlhttp://projecteuclid.org/euclid.ade/1355867327
dc.identifier.relatedurlhttp://www.aftabi.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51369
dc.issue.number9-10
dc.journal.titleAdvances in Differential Equations
dc.language.isoeng
dc.page.final1000
dc.page.initial977
dc.publisherKhayyam Publishing
dc.relation.projectIDMTM2005-03463
dc.relation.projectIDCCG07-UCM/ESP-2787
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordBoussinesq approximation
dc.subject.keywordviscous heating
dc.subject.keywordparabolic system
dc.subject.keywordstrong solutions.
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleLocal strong solutions of a parabolic system related to the Boussinesq approximation for buoyancy-driven flow with viscous heating
dc.typejournal article
dc.volume.number13
dcterms.referencesBatchelor, G.K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press. Bruyëre, N. Existence et unicitè de la solution faible-reormailisèe pour un système non linèaire de Bopussinesq. To appear in Conmptes rendues de la Academie des Sciences, Paris. Ser, I. Díaz, J.I., Galiano, G. (1998), Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal di§usion, Topol. Methods Nonlinear Anal. 11, 59-82. Díaz, J.I., Lazzo, M., Schmidt, P.G. (2005), Large solutions for a system of elliptic equations arising from fluid dynamics, SIAM J. Math. Anal. 37, 490-513. Díaz, J.I., Rakotoson, J.M., Schmidt, P.G. A parabolic system involving a quadratic gradient term related to the Boussinesq approximation. Rev. R. Acad. Cien.Serie A Matem, 101, 2007, 113-117. Díaz, J.I., Rakotoson, J.M., Schmidt, P.G., Mathematical issues concerning the Boussinesq approximation for thermally coupled viscous flows, Proc. Appl. Math. Mech. (to appear). Díaz, J.I., Rakotoson, J.M., Schmidt, P.G., Weak solutions of a modified Navier-StokesBoussinesq model for buoyancy-driven flow with viscous heating (in preparation). Díaz, J.I., Vrabie, I.I. (1994), Compactness of the Green operator of nonlinear di§usion equations: Application to Boussinesq type systems in áuid dynamics, Topol. Methods Nonlinear Anal. 4, 399-416 (volume dedicated to Jean Leray) Feireisl, E., Malek, J. (2006), On the Navier-Stokes equations with temperature-dependent transport coefficients, Differ. Equ. Nonlinear Mech., Art. ID 90616,14 pp.(electronic). Hishida, T. (1991), Existence and regularizing properties of solutions for the nonstationary convection problem, Funkcial. Ekvac. 34, 449-474. Kagei, Y. (1993), On weak solutions of nonstationary Boussinesq equations, Differential Integral Equations 6, 587-611. Kagei, Y. (1995), Attractors for two-dimensional equations of thermal convection in the presence of the dissipation function, Hiroshima Math. Journal 25, 251-311. Kagei, Y., Ruuzicka, M., Thäter, G. (2000), Natural convection with dissipative heating, Comm.Math. Phys. 214, 287-313. Laddyzenskaja, O.A., Solonnikov, V.A., Uralíceva, N.N. (1968), Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23, A.M.S., Providence, R.I. Lions, P.L. (1996), Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford University Press. Mihaljan, J.M. (1962), A rigorous exposition of the Boussinesq approximations applicable to a thin layer of áuid, Astrophys. J. 136, 1126-1133. Morimoto, H. (1992), Nonstationary Boussinesq equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 39, 61-75. Naumann, J. (2006), On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous áuids, Math. Meth. Appl. Sci. 29, 1883-1906. Necas, J., Roubicek, T. (2001), Buoyancy-driven viscous flow with L1-data, Nonlinear Anal. 46,737-755. Rajagopal, K.R., Ruzicka, M., Srinivasa, A.R. (1996), On the Oberbeck-Boussinesq approximation, Math. Models Methods Appl. Sci. 6, 1157-1167. Rakotoson, J.M., Temam, R. (2001), An optimal compactness theorem and application to ellipticparabolic systems, Appl. Math. Lett. 14, 303-306. Temam, R. (1984), Navier-Stokes Equations, North-Holland, Amsterdam
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
165.pdf
Size:
196.31 KB
Format:
Adobe Portable Document Format

Collections