Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Calderón-Zygmund operators and commutators on weighted Lorentz spaces

dc.contributor.authorSoria de Diego, Francisco Javier
dc.contributor.authorCarro Rossell, María Jesús
dc.contributor.authorLi, Hongliang
dc.contributor.authorSun, Qinxiu
dc.date.accessioned2023-06-17T08:56:03Z
dc.date.available2023-06-17T08:56:03Z
dc.date.issued2020
dc.description.abstractWe find necessary conditions (which are also sufficient, for some particular cases) for a pair of weights u and w such that a Calder_on-Zygmund operator T, or its commutator [b; T], with b 2 BMO, is bounded on the weighted Lorentz spaces _p u(w), for 1 < p < 1. This result completes the study already known for the Hardy-Littlewood maximal operator and the Hilbert transform, and hence unifies the weighted theories for the Ap and Bp classes.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63252
dc.identifier.doi10.1007/s12220-020-00560-6
dc.identifier.issn1050-6926
dc.identifier.officialurlhttps://www.springer.com/gp
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s12220-020-00560-6
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7564
dc.journal.titleJournal of geometric analysis
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDMTM2016-75196-P
dc.relation.projectIDUCM (970905)
dc.rights.accessRightsopen access
dc.subject.cdu512.815
dc.subject.keywordCalderón-Zygmund operators
dc.subject.keywordCommutators
dc.subject.keywordWeighted Lorentz spaces
dc.subject.keywordOperadores Calderón-Zygmund
dc.subject.keywordEspacios de Lorentz
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleCalderón-Zygmund operators and commutators on weighted Lorentz spaces
dc.typejournal article
dc.volume.number4
dcterms.references1. Agora, E., Carro, M.J., Soria, J.: Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces. J. Fourier Anal. Appl. 19, 712–730 (2013) 2. Alvarez, J., Pérez, C.: Estimates with A∞A∞ weights for various singular integral operators. Boll. Unione Mat. ital. 8, 123–133 (1994) 3. Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320, 727–735 (1990) 4. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic, Boston (1988) 5. Carro, M.J., Raposo, J.A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Am. Math. Soc. (2007). https://doi.org/10.1090/memo/0877 6. Carro, M.J., Soria, J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112(2), 480–494 (1993) 7. Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974) 8. Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635 (1976) 9. Duoandikoetxea, J.: Weight for maximal functions and singular integrals. In: NCTH Summer School on Harmonic Analysis in Taiwan (2005) 10. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol 250, 3rd edn. Springer, New York (2014) 11. Hunt, R.A., Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973) 12. Li, H.L., Chen, J.C.: Convolutions, tensor products and multipliers of the Orlicz–Lorentz Spaces. Chin. Ann. Math. 36B, 467–484 (2015) 13. Lorentz, G.G.: Some new functional spaces. Ann. Math. 51, 37–55 (1950) 14. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972) 15. Neugebauer, C.J.: Some classical operators on Lorentz spaces. Forum Math. 4, 135–146 (1992) 16. Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128, 163–185 (1995) 17. Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Stud. Math. 96, 145–158 (1990) 18. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)
dspace.entity.typePublication
relation.isAuthorOfPublicationb2108ca5-2270-4783-9661-46cd65b31fc3
relation.isAuthorOfPublicationacc8e1a8-fd56-4017-bb13-dd3a66c88eaa
relation.isAuthorOfPublication.latestForDiscoveryb2108ca5-2270-4783-9661-46cd65b31fc3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
carro-soria-jga.pdf
Size:
304.77 KB
Format:
Adobe Portable Document Format

Collections