Calderón-Zygmund operators and commutators on weighted Lorentz spaces
dc.contributor.author | Soria de Diego, Francisco Javier | |
dc.contributor.author | Carro Rossell, María Jesús | |
dc.contributor.author | Li, Hongliang | |
dc.contributor.author | Sun, Qinxiu | |
dc.date.accessioned | 2023-06-17T08:56:03Z | |
dc.date.available | 2023-06-17T08:56:03Z | |
dc.date.issued | 2020 | |
dc.description.abstract | We find necessary conditions (which are also sufficient, for some particular cases) for a pair of weights u and w such that a Calder_on-Zygmund operator T, or its commutator [b; T], with b 2 BMO, is bounded on the weighted Lorentz spaces _p u(w), for 1 < p < 1. This result completes the study already known for the Hardy-Littlewood maximal operator and the Hilbert transform, and hence unifies the weighted theories for the Ap and Bp classes. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO)/FEDER | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/63252 | |
dc.identifier.doi | 10.1007/s12220-020-00560-6 | |
dc.identifier.issn | 1050-6926 | |
dc.identifier.officialurl | https://www.springer.com/gp | |
dc.identifier.relatedurl | https://link.springer.com/article/10.1007/s12220-020-00560-6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7564 | |
dc.journal.title | Journal of geometric analysis | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.projectID | MTM2016-75196-P | |
dc.relation.projectID | UCM (970905) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.815 | |
dc.subject.keyword | Calderón-Zygmund operators | |
dc.subject.keyword | Commutators | |
dc.subject.keyword | Weighted Lorentz spaces | |
dc.subject.keyword | Operadores Calderón-Zygmund | |
dc.subject.keyword | Espacios de Lorentz | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | Calderón-Zygmund operators and commutators on weighted Lorentz spaces | |
dc.type | journal article | |
dc.volume.number | 4 | |
dcterms.references | 1. Agora, E., Carro, M.J., Soria, J.: Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces. J. Fourier Anal. Appl. 19, 712–730 (2013) 2. Alvarez, J., Pérez, C.: Estimates with A∞A∞ weights for various singular integral operators. Boll. Unione Mat. ital. 8, 123–133 (1994) 3. Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320, 727–735 (1990) 4. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic, Boston (1988) 5. Carro, M.J., Raposo, J.A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Am. Math. Soc. (2007). https://doi.org/10.1090/memo/0877 6. Carro, M.J., Soria, J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112(2), 480–494 (1993) 7. Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974) 8. Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635 (1976) 9. Duoandikoetxea, J.: Weight for maximal functions and singular integrals. In: NCTH Summer School on Harmonic Analysis in Taiwan (2005) 10. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol 250, 3rd edn. Springer, New York (2014) 11. Hunt, R.A., Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973) 12. Li, H.L., Chen, J.C.: Convolutions, tensor products and multipliers of the Orlicz–Lorentz Spaces. Chin. Ann. Math. 36B, 467–484 (2015) 13. Lorentz, G.G.: Some new functional spaces. Ann. Math. 51, 37–55 (1950) 14. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972) 15. Neugebauer, C.J.: Some classical operators on Lorentz spaces. Forum Math. 4, 135–146 (1992) 16. Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128, 163–185 (1995) 17. Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Stud. Math. 96, 145–158 (1990) 18. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b2108ca5-2270-4783-9661-46cd65b31fc3 | |
relation.isAuthorOfPublication | acc8e1a8-fd56-4017-bb13-dd3a66c88eaa | |
relation.isAuthorOfPublication.latestForDiscovery | b2108ca5-2270-4783-9661-46cd65b31fc3 |
Download
Original bundle
1 - 1 of 1