Lê’s conjecture for cyclic covers

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Société Mathématique de France
Google Scholar
Research Projects
Organizational Units
Journal Issue
We describe the link of the cyclic cover over a singularity of complex surface (S, p) totally branched over the zero locus of a germ of analytic function (S, p) ! (C, 0).As an application, we prove Lê’s conjecture for this family of singu-larities i.e. that if the link is homeomorphic to the 3-sphere then the singularity is an equisingular family of unibranch curves.
Singularités franco-japonaises Jean-Paul Brasselet - Tatsuo Suwa (Éd.) Séminaires et Congrès 10 (2005), xxxii+460 pages
N. Chavez – Variétés graphées fibrées sur le cercle et difféomorphismes quasi-finis de surfaces, Ph.D. Thesis, University of Geneva, Switzerland, 1996. P. Du Bois & F. Michel – The integral Seifert form does not determine the topology of plane curve germs, J. Algebraic Geom. 3 (1994), p. 1–38. A. Durfee – Neighbourhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983), p. 517–530. D. Eisenbud & W. Neumann – Three-dimensional link theory and invari ants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. H. Grauert – Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), p. 331–368. W. Jaco & P. Shalen – Seifert fibred spaces in three-manifolds, Mem. Amer. Math. Soc., vol. 220, American Mathematical Society, Providence, RI, 1979. Lê D.T., H. Maugendre & C. Weber – Geometry of critical loci, J. London Math. Soc. (2) 63 (2001), no. 3, p. 533–552. Lê D.T., F. Michel & C. Weber – Courbes polaires et topologie des courbes planes, Ann. scient. Éc. Norm. Sup. 4e série 24 (1991), p. 141–169. Lê D.T. & C. Weber – Équisingularité dans les pinceaux de germes de courbes planes et C0-suffisance, Enseign. Math. 43 (1997), p. 355–380. I. Luengo – The μ-constant stratum is not smooth, Invent. Math. 90 (1987), no. 1, p. 139–152. I. Luengo, A. Melle-Hernández & A. Pichon – on the singularities with equations fd + fd+k=0, in preparation. L. McEwan & A. Nemethi – Some conjectures about quasi-ordinary singularities, preprint. J. Milnor – Singular points of complex hypersurfaces, Annals of Mathematics Studies, vol. 61, Princeton University Press, Princeton, NJ, 1968. A. Némethi & A. Szilárd – The resolution of some surface singularities, II (Iomdin’s series), in Singularities in Algebraic and Analytic Geometry, Proceedings of the AMS Conference, San Antonio, 1999 (C.G. Melles & R.I.Michler, eds.), ContemporaryMathematics, vol. 266, American Mathematical Society, Providence, RI, 2000, p. 129–164. W.D. Neumann – A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves,Trans. Amer. Math. Soc. 268(1981),p. 299–344. A. Pichon – Three-dimensional manifolds which are the boundary of a normal singularity zk− f(x, y) = 0, Math. Z. 231 (1999), p. 625–654. Fibrations sur le cercle et surfaces complexes, Ann. Inst. Fourier (Grenoble) 51 (2001), p. 337–374. F. Waldhausen – Eine klasse von 3-dimensionalen Mannifaltigkeiten II, Invent. Math.4 (1967), p. 87–117. C.Weber (ed.) – Noeuds, tresses et singularités. Proceedings of the seminar held in Plans-sur-Bex, March 27-April 2 1982, Monographies de L’Enseignement Mathématique, vol. 31, 1983.