Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lê’s conjecture for cyclic covers

dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorPichon, Anne
dc.date.accessioned2023-06-20T10:34:18Z
dc.date.available2023-06-20T10:34:18Z
dc.date.issued2005
dc.descriptionSingularités franco-japonaises Jean-Paul Brasselet - Tatsuo Suwa (Éd.) Séminaires et Congrès 10 (2005), xxxii+460 pages
dc.description.abstractWe describe the link of the cyclic cover over a singularity of complex surface (S, p) totally branched over the zero locus of a germ of analytic function (S, p) ! (C, 0).As an application, we prove Lê’s conjecture for this family of singu-larities i.e. that if the link is homeomorphic to the 3-sphere then the singularity is an equisingular family of unibranch curves.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20986
dc.identifier.issn1285-2783
dc.identifier.officialurlhttp://smf4.emath.fr/en/Publications/SeminairesCongres/2005/10/html/smf_sem-cong_10_163-190.html
dc.identifier.relatedurlhttp://smf.emath.fr/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50585
dc.issue.number10
dc.journal.titleSéminaires & Congrès
dc.language.isoeng
dc.page.final190
dc.page.initial163
dc.publisherSociété Mathématique de France
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordSurface complex
dc.subject.keywordentrelac
dc.subject.keywordrevêtement cyclique
dc.subject.keywordnormalisation topologique
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleLê’s conjecture for cyclic covers
dc.typejournal article
dcterms.referencesN. Chavez – Variétés graphées fibrées sur le cercle et difféomorphismes quasi-finis de surfaces, Ph.D. Thesis, University of Geneva, Switzerland, 1996. P. Du Bois & F. Michel – The integral Seifert form does not determine the topology of plane curve germs, J. Algebraic Geom. 3 (1994), p. 1–38. A. Durfee – Neighbourhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983), p. 517–530. D. Eisenbud & W. Neumann – Three-dimensional link theory and invari ants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. H. Grauert – Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), p. 331–368. W. Jaco & P. Shalen – Seifert fibred spaces in three-manifolds, Mem. Amer. Math. Soc., vol. 220, American Mathematical Society, Providence, RI, 1979. Lê D.T., H. Maugendre & C. Weber – Geometry of critical loci, J. London Math. Soc. (2) 63 (2001), no. 3, p. 533–552. Lê D.T., F. Michel & C. Weber – Courbes polaires et topologie des courbes planes, Ann. scient. Éc. Norm. Sup. 4e série 24 (1991), p. 141–169. Lê D.T. & C. Weber – Équisingularité dans les pinceaux de germes de courbes planes et C0-suffisance, Enseign. Math. 43 (1997), p. 355–380. I. Luengo – The μ-constant stratum is not smooth, Invent. Math. 90 (1987), no. 1, p. 139–152. I. Luengo, A. Melle-Hernández & A. Pichon – on the singularities with equations fd + fd+k=0, in preparation. L. McEwan & A. Nemethi – Some conjectures about quasi-ordinary singularities, preprint. J. Milnor – Singular points of complex hypersurfaces, Annals of Mathematics Studies, vol. 61, Princeton University Press, Princeton, NJ, 1968. A. Némethi & A. Szilárd – The resolution of some surface singularities, II (Iomdin’s series), in Singularities in Algebraic and Analytic Geometry, Proceedings of the AMS Conference, San Antonio, 1999 (C.G. Melles & R.I.Michler, eds.), ContemporaryMathematics, vol. 266, American Mathematical Society, Providence, RI, 2000, p. 129–164. W.D. Neumann – A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves,Trans. Amer. Math. Soc. 268(1981),p. 299–344. A. Pichon – Three-dimensional manifolds which are the boundary of a normal singularity zk− f(x, y) = 0, Math. Z. 231 (1999), p. 625–654. Fibrations sur le cercle et surfaces complexes, Ann. Inst. Fourier (Grenoble) 51 (2001), p. 337–374. F. Waldhausen – Eine klasse von 3-dimensionalen Mannifaltigkeiten II, Invent. Math.4 (1967), p. 87–117. C.Weber (ed.) – Noeuds, tresses et singularités. Proceedings of the seminar held in Plans-sur-Bex, March 27-April 2 1982, Monographies de L’Enseignement Mathématique, vol. 31, 1983.
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luengo34.pdf
Size:
375.09 KB
Format:
Adobe Portable Document Format

Collections