Lê’s conjecture for cyclic covers
dc.contributor.author | Luengo Velasco, Ignacio | |
dc.contributor.author | Pichon, Anne | |
dc.date.accessioned | 2023-06-20T10:34:18Z | |
dc.date.available | 2023-06-20T10:34:18Z | |
dc.date.issued | 2005 | |
dc.description | Singularités franco-japonaises Jean-Paul Brasselet - Tatsuo Suwa (Éd.) Séminaires et Congrès 10 (2005), xxxii+460 pages | |
dc.description.abstract | We describe the link of the cyclic cover over a singularity of complex surface (S, p) totally branched over the zero locus of a germ of analytic function (S, p) ! (C, 0).As an application, we prove Lê’s conjecture for this family of singu-larities i.e. that if the link is homeomorphic to the 3-sphere then the singularity is an equisingular family of unibranch curves. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20986 | |
dc.identifier.issn | 1285-2783 | |
dc.identifier.officialurl | http://smf4.emath.fr/en/Publications/SeminairesCongres/2005/10/html/smf_sem-cong_10_163-190.html | |
dc.identifier.relatedurl | http://smf.emath.fr/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50585 | |
dc.issue.number | 10 | |
dc.journal.title | Séminaires & Congrès | |
dc.language.iso | eng | |
dc.page.final | 190 | |
dc.page.initial | 163 | |
dc.publisher | Société Mathématique de France | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Surface complex | |
dc.subject.keyword | entrelac | |
dc.subject.keyword | revêtement cyclique | |
dc.subject.keyword | normalisation topologique | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Lê’s conjecture for cyclic covers | |
dc.type | journal article | |
dcterms.references | N. Chavez – Variétés graphées fibrées sur le cercle et difféomorphismes quasi-finis de surfaces, Ph.D. Thesis, University of Geneva, Switzerland, 1996. P. Du Bois & F. Michel – The integral Seifert form does not determine the topology of plane curve germs, J. Algebraic Geom. 3 (1994), p. 1–38. A. Durfee – Neighbourhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983), p. 517–530. D. Eisenbud & W. Neumann – Three-dimensional link theory and invari ants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. H. Grauert – Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), p. 331–368. W. Jaco & P. Shalen – Seifert fibred spaces in three-manifolds, Mem. Amer. Math. Soc., vol. 220, American Mathematical Society, Providence, RI, 1979. Lê D.T., H. Maugendre & C. Weber – Geometry of critical loci, J. London Math. Soc. (2) 63 (2001), no. 3, p. 533–552. Lê D.T., F. Michel & C. Weber – Courbes polaires et topologie des courbes planes, Ann. scient. Éc. Norm. Sup. 4e série 24 (1991), p. 141–169. Lê D.T. & C. Weber – Équisingularité dans les pinceaux de germes de courbes planes et C0-suffisance, Enseign. Math. 43 (1997), p. 355–380. I. Luengo – The μ-constant stratum is not smooth, Invent. Math. 90 (1987), no. 1, p. 139–152. I. Luengo, A. Melle-Hernández & A. Pichon – on the singularities with equations fd + fd+k=0, in preparation. L. McEwan & A. Nemethi – Some conjectures about quasi-ordinary singularities, preprint. J. Milnor – Singular points of complex hypersurfaces, Annals of Mathematics Studies, vol. 61, Princeton University Press, Princeton, NJ, 1968. A. Némethi & A. Szilárd – The resolution of some surface singularities, II (Iomdin’s series), in Singularities in Algebraic and Analytic Geometry, Proceedings of the AMS Conference, San Antonio, 1999 (C.G. Melles & R.I.Michler, eds.), ContemporaryMathematics, vol. 266, American Mathematical Society, Providence, RI, 2000, p. 129–164. W.D. Neumann – A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves,Trans. Amer. Math. Soc. 268(1981),p. 299–344. A. Pichon – Three-dimensional manifolds which are the boundary of a normal singularity zk− f(x, y) = 0, Math. Z. 231 (1999), p. 625–654. Fibrations sur le cercle et surfaces complexes, Ann. Inst. Fourier (Grenoble) 51 (2001), p. 337–374. F. Waldhausen – Eine klasse von 3-dimensionalen Mannifaltigkeiten II, Invent. Math.4 (1967), p. 87–117. C.Weber (ed.) – Noeuds, tresses et singularités. Proceedings of the seminar held in Plans-sur-Bex, March 27-April 2 1982, Monographies de L’Enseignement Mathématique, vol. 31, 1983. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce | |
relation.isAuthorOfPublication.latestForDiscovery | 2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce |
Download
Original bundle
1 - 1 of 1