Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the cosmological variation of the fine-structure constant

dc.contributor.authorFernández-Rañada, Antonio
dc.date.accessioned2023-06-20T10:41:33Z
dc.date.available2023-06-20T10:41:33Z
dc.date.issued2003-01
dc.description© EDP Sciences. I am grateful to Profs. C. Aroca, A.I.G. de Castro, E. López, J. M. Usón and J.L. Trueba for discussions.
dc.description.abstractA phenomenological and Newtonian model is proposed to explain the recent observed cosmological variation of the fine-structure constant as an effect of the quantum vacuum, assuming a at universe with cosmological Lambda constant in the cases (Omega(M), Omega(Lambda)) equal to (0.3, 0.7) and (1,0). Because of the fourth Heisenberg relation, the lifetime of the virtual pairs of the zero-point radiation must depend on the gravitational potential Phi, so that the quantum vacuum changes its density and acquires a relative permittivity different from one. Since the matter was more concentrated in the past, the gravitational potential of all the universe was stronger and the optical density of the vacuum higher, the electron charge being then more renormalized and smaller than now. The model predicts that Deltaalpha/alpha is proportional to {Omega(M)[a(t)(-1)-1]-2Omega(Lambda)[a(t)(2)-1]}, a(t) being the scale factor. This agrees with the observations.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24931
dc.identifier.doi10.1209/epl/i2003-00209-3
dc.identifier.issn0295-5075
dc.identifier.officialurlhttp://dx.doi.org/10.1209/epl/i2003-00209-3
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/astro-ph/0202224v4
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51008
dc.issue.number2
dc.journal.titleEurophysics Letters
dc.language.isospa
dc.page.final180
dc.page.initial174
dc.publisherEDP Sciences
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleOn the cosmological variation of the fine-structure constant
dc.typejournal article
dc.volume.number61
dcterms.references[1] Webb J.K., Murphy M.T., Flambaum V.V., Dzuba V.A., Barrow J.D., Churchill C.W., Prochaska J.X. and Wolfe A. M., Phys. Rev. Lett., 87 (2001), 091301. [2] Dirac P., Nature, 139 (1937), 323. [3] Barrow J.D., Sandvik H.B. and Magueijo J., Phys. Rev. D, 65 (2002), 123501, and references therein to previous work. [4] Barrow J.D., Phys. Rev. D, 59 (1999), 043515. [5] Churchill C.W., quoted in Chown M., New Scientist, 28 March 1998, p. 12. [6] Milonni P.W., The Quantum Vacuum (Academic Press, Boston), 1994. [7] Peebles P.J.E., Principles of Physical Cosmology (Princeton University Press, Princeton) 1993, Chapt. 10. [8] Damour Th. and Dyson F., Nucl. Phys. B, 480 (1996), 37. [9] Uzan J. Ph., hep-ph/0205340 v1, 30 May 2002. [10] Olive K.A., Pospelov M., Qian Y.-Z., Coc A., Cassé M. and Vangioni-Flam E., hepph/0205269 v1, 23 May 2002. [11] Weinberg S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley & Sons, New York), 1973. [12] Zavattini E., Comm. At. Mol. Phys., 33 (1996), 83. [13] Kouveliotou C., Dieters S., Strohmayer T., Van Paradijs J., Fishman G.J., Meegan C.A., Hurley K., Kommers J., Smith I., Frail D. and Murakami T., Nature, 393 (1998), 235. [14] Kulkarni S.R. and Thompson Ch., Nature, 393 (1998), 215.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rañada,AF11PREPRINT.pdf
Size:
133.95 KB
Format:
Adobe Portable Document Format

Collections