Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Learning and coordinating in a multilayer network

dc.contributor.authorLugo Arocha, Haydeé Corina
dc.contributor.authorSan Miguel, Maxi
dc.date.accessioned2023-06-19T13:39:03Z
dc.date.available2023-06-19T13:39:03Z
dc.date.issued2015
dc.description.abstractWe introduce a two layer network model for social coordination incorporating two relevant ingredients: a) different networks of interaction to learn and to obtain a pay-off, and b) decision making processes based both on social and strategic motivations. Two populations of agents are distributed in two layers with intralayer learning processes and playing interlayer a coordination game. We find that the skepticism about the wisdom of crowd and the local connectivity are the driving forces to accomplish full coordination of the two populations, while polarized coordinated layers are only possible for all-to-all interactions. Local interactions also allow for full coordination in the socially efficient Pareto-dominant strategy in spite of being the riskier one.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipEuropean Regional Development Fund
dc.description.sponsorshipComisión Europea
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/60273
dc.identifier.doi10.1038/srep07776
dc.identifier.issn2045-2322
dc.identifier.officialurlhttps://doi.org/10.1038/srep07776
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34199
dc.journal.titleScientific reports
dc.language.isoeng
dc.page.final7
dc.page.initial1
dc.publisherNature Publishing Group
dc.relation.projectIDECO2013-42710-P
dc.relation.projectIDFIS2012- 30634
dc.relation.projectIDFP7-ICT-318132
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.keywordComputer simulation
dc.subject.keywordGame theory
dc.subject.keywordHumans
dc.subject.keywordLearning
dc.subject.keywordTheoretical models
dc.subject.keywordSocial support
dc.subject.keywordTime factors
dc.subject.ucmTeoría de Juegos
dc.subject.ucmEconometría (Economía)
dc.subject.ucmAprendizaje
dc.subject.unesco1207.06 Teoría de Juegos
dc.subject.unesco5302 Econometría
dc.subject.unesco6104.03 Leyes del Aprendizaje
dc.titleLearning and coordinating in a multilayer network
dc.typejournal article
dc.volume.number5
dcterms.referencesLevitt, B. & March, J. G. Organizational learning. Ann Rev Socio 14, 319–340 (1988). Delios, A. & Henisz, W. J. Political hazards, experience, and sequential entry strategies: the international expassion of Japanese firms 1980–1998. Int Manage J 24, 1153–1164 (2003). Schlag, K. Why imitate, and if so, how? A boundedlly rational approach to multiarmed bandits. J Econ Theory 78, 130–156 (1998). Vilone, D., Ramasco, J. J., Sa´nchez, A. & San Miguel, M. Social and strategic imitation: the way to consensus. Sci. Rep. 2, 686; DOI: 10.1038/srep00686 (2012). Vega-Redondo, F. Economics and the Theory of Games; Cambridge University Press: Cambridge, UK, 2003. Luthi, L., Pestelacci, E. & Tomassini, M. Cooperation and community structure in social networks. Physica A 387, 955–966 (2008). Skyrms, B. The Stag Hunt and the Evolution of Social Structure; Cambridge University Press: Cambridge, UK, 2004. Roca, C. P., Cuesta, J. A. & Sa´nchez, A. Evolutionary Game theory: temporal and spatial effects beyond replicator dynamics. Phys. Life Rev. 6, 208–249 (2009). Tomassini, M. & Pestelacci, E. Coordination Games on Dynamical Networks. Games 1, 242–261 (2010). Scott, J. Social Network Analysis. SAGE Publications, 2012. Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications. Cambridge University Press, 1994. Zhang, P., Peeta, S. & Friesz, T. Dynamic Game Theoretic Model of Multi-Layer Infrastructure Networks. Netw Spat Econ 5, 147–178 (2005). Kivela¨ etal Multilayer Networks arXiv:1309.7233. J. Complex Netw. 2(3), 203–271 (2014). Wang, Z., Szolnoki, A. & Perc, M. Interdependent network reciprocity in evolutionary games. Sci. Rep. 3, 1183 (2013). Wang, Z., Szolnoki, A. &Perc, M. Optimal interdependence between networks for the evolution of cooperation. Sci. Rep. 3, 2470 (2013). Jiang, L.-L. & Perc, M. Spreading of cooperative behaviour across interdependent groups. Sci. Rep. 3, 2483 (2013). Szolnoki, A.&Perc, M. Information sharing promotes prosocial behaviour. New J. Phys. 15, 053010 (2013). Wang, Z.,Wang, L. & Perc, M. Degree mixing in multilayer networks impedes the evolution of cooperation. Phys. Rev. E 89, 052813 (2014). Granovetter, M. Threshold Models of Collective Behavior. J. Am. Soc. 83, 1420–1443 (1978). Centola, D., Eguı´luz, V. M. & Macy, M. W. Cascade Dynamics of Complex Propagation. Physica A 374, 449–456 (2007). Gonzlez-Avella, J. C., Eguı´luz, V. M.,Marsili, M.,Vega-Redondo, F. &San Miguel, M. Threshold learning dynamics in social networks. PLoS ONE 6(5), e20207 (2011). Suchecki, K., Eguı´luz, V. M. & San Miguel, M. Voter model dynamics in complex networks: Role of dimensionality. Phys. Rev. E 72, 036132(1–8) (2005). Ramsey, F. P. Chapter VII. The foundation of mathematics and other logical essays. Braithwaite RB (ed) 156–198. Kegan, Paul, trench & Co., London; Harcourt, Brace and Company, New York, 1931. Cabrales, A.&Uriarte, J. R. Doubts and Equilibria. J Evol Econ 23, 783–810 (2013). Gracia-Lzaro, C. et al. A. Heterogeneous networks do not promote cooperation when humans play a Prisoner’s Dilemma, PNAS (USA) 109, 12922–12926 (2012). Grujic´, J., Fosco, C.,Araujo, L., Cuesta, J. A.& Sánchez A. Social experiments in the mesoscale: Humans playing a spatial Prisoner’s Dilemma. PLoS ONE 5(11), e13749 (2010). Grujic´, J. et al. A meta-analysis of spatial Prisoner’s Dilemma experiments: Conditional cooperation and payoff irrelevance. Sci.Rep. 4, 4615 (2014). Vilone, D., Ramasco, J. J., Sa´nchez, A. & San Miguel, M. Social imitation vs strategic choice, or consensus vs cooperation in the networked Prisoners Dilemma. Physical Review E 90, 022810 (2014). Holley, R. & Liggett, T. M. Ergodic theorems for weakly interacting infinite systems and the Voter Model. Ann. Probab. 3, 643–663 (1975). Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359, 826–829 (1992). Kandori, M.,Mailath, G. & Rob, R. Learning, mutation, and long-run equilibria in games. Econometrica 61, 29–56 (1993). Ellison, G. Learning, local interaction, and coordination. Econometrica 61, 1047–1071 (1993). Szolnoki, A., Wang, Z. & Perc, M. Wisdom of groups promotes cooperation in evolutionary social dilemmas. Sci. Rep. 2, 576; DOI:10.1038/srep0056 (2012).
dspace.entity.typePublication
relation.isAuthorOfPublication893acf3a-d00d-4165-89f1-74fe5ad70ae1
relation.isAuthorOfPublication.latestForDiscovery893acf3a-d00d-4165-89f1-74fe5ad70ae1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lugo, H.-Learning and coordinating....pdf
Size:
686.04 KB
Format:
Adobe Portable Document Format

Collections