Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Learning Principal Component Analysis by Using Data from Air Quality Networks

Loading...
Thumbnail Image

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

ACS
Citations
Google Scholar

Citation

Abstract

With the final objective of using computational and chemometrics tools in the chemistry studies, this paper shows the methodology and interpretation of the Principal Component Analysis (PCA) using pollution data from different cities. This paper describes how students can obtain data on air quality and process such data for additional information related to the pollution sources, climate effects, and social aspects over pollution levels by using a powerful chemometrics tool such as principal component analysis (PCA). The paper could also be useful for students interested in environmental chemistry and pollution interpretation; this statistical method is a simple way to display visually as much as possible of the total variation of the data in a few dimensions, and it is an excellent tool for looking into the normal pollution patterns.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections