C1-fine approximation of functions on Banach spaces with unconditional basis
dc.contributor.author | Azagra Rueda, Daniel | |
dc.contributor.author | Gómez Gil, Javier | |
dc.contributor.author | Fry, Robb | |
dc.contributor.author | Lovo, Mauricio | |
dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
dc.date.accessioned | 2023-06-20T09:27:28Z | |
dc.date.available | 2023-06-20T09:27:28Z | |
dc.date.issued | 2005-03 | |
dc.description.abstract | We show that if X is a Banach space having an unconditional basis and a Cp-smooth Lipschitz bump function, then for every C1-smooth function f from X into a Banach space Y, and for every continuous function ε : X → (0, ∞), there exists a Cp-smooth function g : X → Y such that ‖f − g‖ ≤ ε and ‖f′ − g′‖ ≤ ε. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12356 | |
dc.identifier.doi | 10.1093/qmath/hah020 | |
dc.identifier.issn | 0033-5606 | |
dc.identifier.officialurl | http://qjmath.oxfordjournals.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49596 | |
dc.issue.number | 1 | |
dc.journal.title | Quaterly Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 20 | |
dc.page.initial | 13 | |
dc.publisher | Oxford University Press | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Smooth bumps | |
dc.subject.keyword | Fine approximation | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | C1-fine approximation of functions on Banach spaces with unconditional basis | |
dc.type | journal article | |
dc.volume.number | 56 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication | 88621a6e-cb08-45cc-a43e-43a388119938 | |
relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1