Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fast-Coding Robust Motion Estimation Model in a GPU

dc.conference.dateFebrero 2015
dc.conference.placeSan Francisco, California, United States
dc.conference.titleSPIE 9400, Real-Time Image and Video Processing
dc.contributor.authorGarcía Sánchez, Carlos
dc.contributor.authorBotella Juan, Guillermo
dc.contributor.authorSande, Francisco de
dc.contributor.authorPrieto Matías, Manuel
dc.date.accessioned2023-06-18T07:19:29Z
dc.date.available2023-06-18T07:19:29Z
dc.date.issued2015-02-10
dc.description.abstractNowadays vision systems are used with countless purposes. Moreover, the motion estimation is a discipline that allow to extract relevant information as pattern segmentation, 3D structure or tracking objects. However, the real-time requirements in most applications has limited its consolidation, considering the adoption of high performance systems to meet response times. With the emergence of so-called highly parallel devices known as accelerators this gap has narrowed. Two extreme endpoints in the spectrum of most common accelerators are Field Programmable Gate Array (FPGA) and Graphics Processing Systems (GPU), which usually offer higher performance rates than general propose processors. Moreover, the use of GPUs as accelerators involves the efficient exploitation of any parallelism in the target application. This task is not easy because performance rates are affected by many aspects that programmers should overcome. In this paper, we evaluate OpenACC standard, a programming model with directives which favors porting any code to a GPU in the context of motion estimation application. The results confirm that this programming paradigm is suitable for this image processing applications achieving a very satisfactory acceleration in convolution based problems as in the well-known Lucas & Kanade method.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31457
dc.identifier.officialurlhttp://dx.doi.org/10.1117/12.2077091
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24978
dc.language.isoeng
dc.relation.projectIDTIN2012-32180
dc.relation.projectIDTIN2011-15734-E
dc.rights.accessRightsopen access
dc.subject.cdu004.31
dc.subject.keywordMotion Estimation
dc.subject.keywordGPU
dc.subject.keywordOpenACC
dc.subject.ucmInformática (Informática)
dc.subject.ucmHardware
dc.subject.unesco1203.17 Informática
dc.titleFast-Coding Robust Motion Estimation Model in a GPU
dc.typeconference paper
dspace.entity.typePublication
relation.isAuthorOfPublicationd04764e1-9d18-42ae-a9e7-c55f9bd50934
relation.isAuthorOfPublicationf94b32c6-dff7-4d98-9c7a-00aad48c2b6a
relation.isAuthorOfPublication5d3f6717-1495-4217-853c-8c9c75d56620
relation.isAuthorOfPublication.latestForDiscoveryd04764e1-9d18-42ae-a9e7-c55f9bd50934

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fast-coding.pdf
Size:
297.81 KB
Format:
Adobe Portable Document Format