Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

We address the problem of the Euclidean upgrading of a projective calibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient. As a consequence, we propose an algorithm that performs a Euclidean upgrading with 5 ({theoretical minimum}) or more cameras with the knowledge of the pixel shape as the only constraint. We provide experiments with real images showing the good performance of the technique.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections