Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

dc.contributor.authorRonda Prieto, José Ignacio
dc.contributor.authorValdés Morales, Antonio
dc.contributor.authorGallego Bonet, Guillermo
dc.date.accessioned2023-06-20T00:08:21Z
dc.date.available2023-06-20T00:08:21Z
dc.date.issued2011
dc.description.abstractWe address the problem of the Euclidean upgrading of a projective calibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient. As a consequence, we propose an algorithm that performs a Euclidean upgrading with 5 ({theoretical minimum}) or more cameras with the knowledge of the pixel shape as the only constraint. We provide experiments with real images showing the good performance of the technique.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14615
dc.identifier.issn0920-5691 (Print) 1573-1405 (Online)
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42061
dc.journal.titleInternational Journal of Computer Vision
dc.language.isoeng
dc.publisherSpringer
dc.rights.accessRightsopen access
dc.subject.keywordCamera autocalibration
dc.subject.keywordVarying parameters
dc.subject.keywordSquare pixels
dc.subject.keywordThree-dimensional reconstruction
dc.subject.keywordAbsolute Conic
dc.subject.keywordSix Line Conic Variety
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleAutocalibration with the Minimum Number of Cameras with Known Pixel Shape
dc.typejournal article
dcterms.references1. Bôcher, M.: Introduction to Higher Algebra. Dover Phoenix Editions. Dover Publications (2004) 2. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) 3. Carballeira, P., Ronda, J.I., Valdés, A.: 3d reconstruction with uncalibrated cameras using the six-line conic variety. In: ICIP, pp. 205–208. IEEE (2008) 4. Faugeras, O.: Stratification of 3-d vision: projective, affine, and metric representations. Journal of the Optical Society of America A 12, 46,548–4 (1995) 5. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In: CVPR (2007) 6. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cambridge University Press (2003) 7. Hartley, R.I.: Estimation of relative camera positions for uncalibrated cameras. In: Proc. European Conference on Computer Vision, pp. 579–587. Springer-Verlag, London, UK (1992) 8. Heyden, A., Åström, K.: Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition. New York, USA (1997) 9. Lowe, D.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999) 10. Luong, Q.T., Viéville, T.: Canonical representations for the geometries of multiple projective views. Comput. Vis. Image Underst. 64, 193–229 (1996). DOI 10.1006/cviu.1996.0055. URL http://portal.acm.org/citation.cfm?id=235090.235091 11. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3-D Vision. Springer (2003) 12. Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vision 8(2), 123–151 (1992). DOI http://dx.doi.org/10.1007/BF00127171. URL http://portal.acm.org/citation.cfm?id=144382 13. Pollefeys, M., Gool, L.V.: A stratified approach to metric selfcalibration. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 407–412 (1997). URL citeseer. ist.psu.edu/article/pollefeys97stratified.html 14. Ponce, J., McHenry, K., Papadopoulo, T., Teillaud, M., Triggs, B.: On the absolute quadratic complex and its application to autocalibration. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 780–787. Washington, DC, USA (2005). DOI http://dx.doi.org/10.1109/CVPR.2005.256 15. Ronda, J.I., Valdés, A., Gallego, G.: Line geometry and camera autocalibration. J. Math. Imaging Vis. 32(2), 193–214 (2008). DOI http://dx.doi.org/10.1007/s10851-008-0095-0 16. Schröcker, H.P.: Intersection conics of six straight lines. Beitr. Algebra Geom 46(2), 435–446 (2005) 17. Seo, Y., Heyden, A.: Auto-calibration from the orthogonality constraints. In: Proc. International Conference on Pattern Recognition, vol. 01, pp. 1067–1071. Los Alamitos, CA, USA (2000). DOI http://doi.ieeecomputersociety.org/10.1109/ICPR.2000.905277 18. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80(2), 189–210 (2008) 19. Sturm, P.: Critical motion sequences for monocular selfcalibration and uncalibrated euclidean reconstruction. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on 0, 1100 (1997). DOI http://doi.ieeecomputersociety.org/10.1109/CVPR.1997.609467 20. Sturm, P.: Self-calibration of a moving zoom-lens camera by precalibration. Image and Vision Computing 15(8), 583–589 (1997). URL http://perception.inrialpes.fr/Publications/1997/Stu97b 21. Tresadern, P.A., Reid, I.D.: Camera calibration from human motion. Image Vision Comput. 26(6), 851–862 (2008). DOI http://dx.doi.org/10.1016/j.imavis.2007.10.001 22. Triggs, B.: Autocalibration and the absolute quadric. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 609–614. Puerto Rico, USA (1997). URL http://perception.inrialpes.fr/Publications/1997/Tri97 23. Valdés, A., Ronda, J.I., Gallego, G.: Linear camera autocalibration with varying parameters. In: Proc. International Conference on Image Processing, vol. 5, pp. 3395–3398. Singapore (2004) 24. Valdés, A., Ronda, J.I., Gallego, G.: The absolute line quadric and camera autocalibration. International Journal of Computer Vision 66(3), 283–303 (2006
dspace.entity.typePublication
relation.isAuthorOfPublication2ee189aa-d1f1-45ca-a646-7433de5952b9
relation.isAuthorOfPublication.latestForDiscovery2ee189aa-d1f1-45ca-a646-7433de5952b9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ConicsThroughSixLines-preprint.pdf
Size:
5.4 MB
Format:
Adobe Portable Document Format

Collections