Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Surjection and inversion for locally Lipschitz maps between Banach spaces

dc.contributor.authorGutú, Olivia
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-17T12:44:56Z
dc.date.available2023-06-17T12:44:56Z
dc.date.issued2019-10-15
dc.description.abstractWe study the global invertibility of non-smooth, locally Lipschitz maps between infinite-dimensional Banach spaces, using a kind of Palais-Smale condition. To this end, we consider the Chang version of the weighted Palais-Smale condition for locally Lipschitz functionals in terms of the Clarke subdifferential, as well as the notion of pseudo-Jacobians in the infinite-dimensional setting, which are the analog of the pseudo-Jacobian matrices defined by Jeyakumar and Luc. Using these notions, we derive our results about existence and uniqueness of solution for nonlinear equations. In particular, we give a version of the classical Hadamard integral condition for global invertibility in this context.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedFALSE
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75940
dc.identifier.doi10.1016/j.jmaa.2019.05.044
dc.identifier.issn0022-247X
dc.identifier.officialurlhttps://doi.org/10.1016/j.jmaa.2019.05.044
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12888
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final594
dc.page.initial578
dc.publisherElsevier
dc.relation.projectIDMTM2015-65825-P
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordGlobal invertibility
dc.subject.keywordPalais-Smale condition
dc.subject.keywordNonsmooth analysis
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleSurjection and inversion for locally Lipschitz maps between Banach spaces
dc.typejournal article
dc.volume.number478
dcterms.references[1] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Dover publications, New York (2006). 3 [2] D. Azé and J-N. Corvellec, Variational methods in classical open mapping theorems, J. Convex Anal. 13 (2006), 477–488. 5 [3] S. Banach and S. Mazur, Über mehrdeutige stetige Abbildungen, Studia Math, 5 (1934), 174–178. 2 [4] K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations J. Math. Anal. Appl. 80 (1981), 102–129. 10 [5] F. H. Clarke, Optimization and Nonsmooth Analysis, Classics in Applied Mathematics 5, SIAM, Philadelphia (1990). 5 [6] A. L. Dontchev, The Graves theorem revisited, J. Convex Anal. 3 (1996), 45–53. 5 [7] M. Galewski, E. Galewska and E. Schmeidel, Conditions for having a diffeomorphism between two Banach spaces, Electron. J. Differential Equations 2014, No. 99, 6 pp. 2 [8] M. Galewski and M. Koniorczyk, On a global diffeomorphism between two Banach spaces and some application, Studia Sci. Math. Hungar. 52 (2015), 65–86. 2, 12 [9] M. Galewski and M. Koniorczyk, On a global implicit function theorem and some applications to integro-differential initial value problems, Acta Math. Hungar. 148 (2016), 257–278. 12 [10] I. Garrido, O. Gutú and J. A. Jaramillo, Global inversion and covering maps on length spaces, Nonlinear Anal. 73 (2010), 1364–1374. 2 [11] W. B. Gordon, On the diffeomorphism of Euclidean space, Amer. Math. Monthly 79 (1972), 755–759. 2 [12] O. Gutú, On global inverse theorems, Topol. Methods in Nonlinear Anal. 49 (2017), 401–444. 1 [13] O. Gutú, Chang Palais-Smale condition and global inversion, Bull. Math. Roum. 61 (2018), 293–303. 2, 10, 11 [14] O. Gutú and J. A. Jaramillo, Global homeomorphisms and covering projections on metric spaces, Math. Ann. 338 (2007), 75–95. 2 [15] J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906), 71–84. 1, 8 [16] D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces, Adv. Nonlinear Stud. 12 (2012), 89–100. 2, 10, 11, 12 [17] A. D. Ioffe, Global surjection and global Inverse mapping theorems in Banach spaces, Ann.New York Acad. Sci. 491 (1987), 181–188. 2, 8, 9 [18] A. D. Ioffe, On the local surjection property, Nonliear Anal. 11 (1987), 565–592. 7 [19] A. D. Ioffe, Metric regularity—a survey part 1. theory, J. Aus. Math. Soc. 101 (2016), 188—243. 7, 8 [20] A. D. Ioffe, Variational Analysis of Regular Mappings, Springer, (2017). 5, 6 [21] J. A. Jaramillo, S. Lajara and O. Madiedo, Inversion of nonsmooth maps between Banach spaces. To appear in Set-Valued Var. Anal. 2, 3, 4, 5, 6, 7, 9, 10 [22] J. A. Jaramillo, O. Madiedo and L. Sánchez-González, Global inversion of nonsmooth mappings on Finsler manifolds, J. Convex Anal. 20 (2013), 1127–1146. 1 [23] J. A. Jaramillo, O. Madiedo and L. Sánchez-González, Global inversion of nonsmooth mappings using pseudo-Jacobian matrices Nonlinear Anal. 108 (2014), 57–65. 1 [24] V. Jeyakumar and D.T. Luc, Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization, SIAM J. Control Optim. 36 (1998), 1815–1832. 1, 3 [25] V. Jeyakumar and D.T. Luc, Nonsmooth Vector Functions and Continuous Optimization, Optimization and its Applications 10, Springer, New York (2008). 1 [26] F. John, On quasi-isometric maps I, Comm. Pure Appl. Math. 21 (1968), 77–110. 2 [27] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 189–209. 2, 11 [28] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I, Springer, (2006). 7 [29] Z. Páles, Inverse and implicit function theorems for nonsmooth maps in Banach spaces, J. Math. Anal. Appl. 209 (1997), 202–220. 5 [30] Z. Páles and V. Zeidan, Generalized Jacobian for functions with infinite dimensional range and domain, Set-Valued Anal. 15 (2007), 331–375. 4, 5, 6 [31] R. Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974), 169–183. 1 [32] B. H. Pourciau, Analysis and optimization of Lipschitz continuous mappings, J. Optim. Theory Appl. 22 (1977), 311–351. 3 [33] B. H. Pourciau, Hadamard’s theorem for locally Lipschitzian maps, J. Math. Anal. Appl. 85 (1982), 279–285. 1, 6 [34] B. H. Pourciau, Global invertibility of nonsmooth mappings, J. Math. Anal. Appl. 131 (1988), 170–179. 1, 6 [35] P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Annals Math. 146, (1997), 647–691. 2, 5
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jaramillo_surjection.pdf
Size:
211.91 KB
Format:
Adobe Portable Document Format

Collections