Surjection and inversion for locally Lipschitz maps between Banach spaces
dc.contributor.author | Gutú, Olivia | |
dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
dc.date.accessioned | 2023-06-17T12:44:56Z | |
dc.date.available | 2023-06-17T12:44:56Z | |
dc.date.issued | 2019-10-15 | |
dc.description.abstract | We study the global invertibility of non-smooth, locally Lipschitz maps between infinite-dimensional Banach spaces, using a kind of Palais-Smale condition. To this end, we consider the Chang version of the weighted Palais-Smale condition for locally Lipschitz functionals in terms of the Clarke subdifferential, as well as the notion of pseudo-Jacobians in the infinite-dimensional setting, which are the analog of the pseudo-Jacobian matrices defined by Jeyakumar and Luc. Using these notions, we derive our results about existence and uniqueness of solution for nonlinear equations. In particular, we give a version of the classical Hadamard integral condition for global invertibility in this context. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | MICINN | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/75940 | |
dc.identifier.doi | 10.1016/j.jmaa.2019.05.044 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | https://doi.org/10.1016/j.jmaa.2019.05.044 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/12888 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Mathematical Analysis and Applications | |
dc.language.iso | eng | |
dc.page.final | 594 | |
dc.page.initial | 578 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2015-65825-P | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Global invertibility | |
dc.subject.keyword | Palais-Smale condition | |
dc.subject.keyword | Nonsmooth analysis | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Surjection and inversion for locally Lipschitz maps between Banach spaces | |
dc.type | journal article | |
dc.volume.number | 478 | |
dcterms.references | [1] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Dover publications, New York (2006). 3 [2] D. Azé and J-N. Corvellec, Variational methods in classical open mapping theorems, J. Convex Anal. 13 (2006), 477–488. 5 [3] S. Banach and S. Mazur, Über mehrdeutige stetige Abbildungen, Studia Math, 5 (1934), 174–178. 2 [4] K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations J. Math. Anal. Appl. 80 (1981), 102–129. 10 [5] F. H. Clarke, Optimization and Nonsmooth Analysis, Classics in Applied Mathematics 5, SIAM, Philadelphia (1990). 5 [6] A. L. Dontchev, The Graves theorem revisited, J. Convex Anal. 3 (1996), 45–53. 5 [7] M. Galewski, E. Galewska and E. Schmeidel, Conditions for having a diffeomorphism between two Banach spaces, Electron. J. Differential Equations 2014, No. 99, 6 pp. 2 [8] M. Galewski and M. Koniorczyk, On a global diffeomorphism between two Banach spaces and some application, Studia Sci. Math. Hungar. 52 (2015), 65–86. 2, 12 [9] M. Galewski and M. Koniorczyk, On a global implicit function theorem and some applications to integro-differential initial value problems, Acta Math. Hungar. 148 (2016), 257–278. 12 [10] I. Garrido, O. Gutú and J. A. Jaramillo, Global inversion and covering maps on length spaces, Nonlinear Anal. 73 (2010), 1364–1374. 2 [11] W. B. Gordon, On the diffeomorphism of Euclidean space, Amer. Math. Monthly 79 (1972), 755–759. 2 [12] O. Gutú, On global inverse theorems, Topol. Methods in Nonlinear Anal. 49 (2017), 401–444. 1 [13] O. Gutú, Chang Palais-Smale condition and global inversion, Bull. Math. Roum. 61 (2018), 293–303. 2, 10, 11 [14] O. Gutú and J. A. Jaramillo, Global homeomorphisms and covering projections on metric spaces, Math. Ann. 338 (2007), 75–95. 2 [15] J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906), 71–84. 1, 8 [16] D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces, Adv. Nonlinear Stud. 12 (2012), 89–100. 2, 10, 11, 12 [17] A. D. Ioffe, Global surjection and global Inverse mapping theorems in Banach spaces, Ann.New York Acad. Sci. 491 (1987), 181–188. 2, 8, 9 [18] A. D. Ioffe, On the local surjection property, Nonliear Anal. 11 (1987), 565–592. 7 [19] A. D. Ioffe, Metric regularity—a survey part 1. theory, J. Aus. Math. Soc. 101 (2016), 188—243. 7, 8 [20] A. D. Ioffe, Variational Analysis of Regular Mappings, Springer, (2017). 5, 6 [21] J. A. Jaramillo, S. Lajara and O. Madiedo, Inversion of nonsmooth maps between Banach spaces. To appear in Set-Valued Var. Anal. 2, 3, 4, 5, 6, 7, 9, 10 [22] J. A. Jaramillo, O. Madiedo and L. Sánchez-González, Global inversion of nonsmooth mappings on Finsler manifolds, J. Convex Anal. 20 (2013), 1127–1146. 1 [23] J. A. Jaramillo, O. Madiedo and L. Sánchez-González, Global inversion of nonsmooth mappings using pseudo-Jacobian matrices Nonlinear Anal. 108 (2014), 57–65. 1 [24] V. Jeyakumar and D.T. Luc, Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization, SIAM J. Control Optim. 36 (1998), 1815–1832. 1, 3 [25] V. Jeyakumar and D.T. Luc, Nonsmooth Vector Functions and Continuous Optimization, Optimization and its Applications 10, Springer, New York (2008). 1 [26] F. John, On quasi-isometric maps I, Comm. Pure Appl. Math. 21 (1968), 77–110. 2 [27] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 189–209. 2, 11 [28] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I, Springer, (2006). 7 [29] Z. Páles, Inverse and implicit function theorems for nonsmooth maps in Banach spaces, J. Math. Anal. Appl. 209 (1997), 202–220. 5 [30] Z. Páles and V. Zeidan, Generalized Jacobian for functions with infinite dimensional range and domain, Set-Valued Anal. 15 (2007), 331–375. 4, 5, 6 [31] R. Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974), 169–183. 1 [32] B. H. Pourciau, Analysis and optimization of Lipschitz continuous mappings, J. Optim. Theory Appl. 22 (1977), 311–351. 3 [33] B. H. Pourciau, Hadamard’s theorem for locally Lipschitzian maps, J. Math. Anal. Appl. 85 (1982), 279–285. 1, 6 [34] B. H. Pourciau, Global invertibility of nonsmooth mappings, J. Math. Anal. Appl. 131 (1988), 170–179. 1, 6 [35] P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Annals Math. 146, (1997), 647–691. 2, 5 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
relation.isAuthorOfPublication.latestForDiscovery | 8b6e753b-df15-44ff-8042-74de90b4e3e9 |
Download
Original bundle
1 - 1 of 1