Bounded duality in topological abelian groups
dc.book.title | Functional Analysis and Continuous Optimization. IMFACO 2022 | |
dc.contributor.author | Martín Peinador, Elena | |
dc.contributor.author | Chasco, M. J. | |
dc.contributor.editor | Amigó, J. M. | |
dc.contributor.editor | Cánovas, M. J. | |
dc.contributor.editor | López-Cerdá, M. A. | |
dc.contributor.editor | López-Pellicer, M. | |
dc.date.accessioned | 2023-07-12T09:03:19Z | |
dc.date.available | 2023-07-12T09:03:19Z | |
dc.date.issued | 2023-07-02 | |
dc.description.abstract | We define the β-duality for topological Abelian groups by means of the notion of Hejcman of boundedness in uniform spaces. A real locally convex space considered as an Abelian topological group is β-reflexive iff it is reflexive in the ordinary sense for locally convex spaces. Thus, β-reflexivity is the natural extension to Abelian topological groups of the well-known notion of reflexivity. We prove: 1) A locally compact Abelian group is β-reflexive. 2) A β-reflexive metrizable group is reflexive in Pontryagin sense. 3) The β-bidual of a metrizable group is also a metrizable group. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | FALSE | |
dc.description.status | pub | |
dc.identifier.doi | 10.1007/978-3-031-30014-1_5 | |
dc.identifier.officialurl | https://link.springer.com/chapter/10.1007/978-3-031-30014-1_5#citeas | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/87220 | |
dc.language.iso | eng | |
dc.page.final | 131 | |
dc.page.initial | 113 | |
dc.publication.place | Cham | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Springer Proceedings in Mathematics & Statistics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | H-bounded set | |
dc.subject.keyword | Reflexive | |
dc.subject.keyword | Equicontinuous | |
dc.subject.keyword | Precompact | |
dc.subject.keyword | Schwartz group | |
dc.subject.keyword | Locally convex space | |
dc.subject.ucm | Álgebra | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Bounded duality in topological abelian groups | |
dc.type | book part | |
dc.type.hasVersion | AO | |
dc.volume.number | 424 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- martinpeinador_bounded.pdf
- Size:
- 216.31 KB
- Format:
- Adobe Portable Document Format