Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the character variety of periodic knots and links

Loading...
Thumbnail Image

Full text at PDC

Publication date

2000

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge Univ Press
Citations
Google Scholar

Citation

Abstract

A link L of the 3-sphere S3 is said to be g-periodic (g≥2 an integer) if there exists an orientation preserving auto-homeomorphism h of S3 such that h(L)=L, h is of order g and the set of fixed points of h is a circle disjoint from L. A knot is called periodic with rational quotient if it is obtained as the preimage of one component of a 2-bridge link by a g-fold cyclic covering branched on the other component. In this paper the authors introduce a method to compute the excellent component of the character variety of periodic knots (note that for hyperbolic knots the excellent component of the character curve contains the complete hyperbolic structure). Among other examples, this method is applied to the seven hyperbolic periodic knots with rational quotient in Rolfsen's table and with bridge number greater than 2.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections