Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the character variety of periodic knots and links

dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T18:47:50Z
dc.date.available2023-06-20T18:47:50Z
dc.date.issued2000-11
dc.description.abstractA link L of the 3-sphere S3 is said to be g-periodic (g≥2 an integer) if there exists an orientation preserving auto-homeomorphism h of S3 such that h(L)=L, h is of order g and the set of fixed points of h is a circle disjoint from L. A knot is called periodic with rational quotient if it is obtained as the preimage of one component of a 2-bridge link by a g-fold cyclic covering branched on the other component. In this paper the authors introduce a method to compute the excellent component of the character variety of periodic knots (note that for hyperbolic knots the excellent component of the character curve contains the complete hyperbolic structure). Among other examples, this method is applied to the seven hyperbolic periodic knots with rational quotient in Rolfsen's table and with bridge number greater than 2.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22219
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=64095
dc.identifier.relatedurlhttp://journals.cambridge.org/action/login
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58643
dc.issue.number3
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final490
dc.page.initial477
dc.publisherCambridge Univ Press
dc.relation.projectIDPB95-0413
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.keywordKnots and links in the 3-sphere
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn the character variety of periodic knots and links
dc.typejournal article
dc.volume.number129
dcterms.referencesC. Ashley. The Ashley book of knots (Doubleday and Company, 1944). G. Burde. SU(2)-representation spaces for two-bridge knot groups. Math. Ann. 173 (1990), 103–119. G. Brumfiel and H. Hilden. SL(2)-representations of finitely presented groups; in Contemporary Math. vol. 187 (AMS, 1995). M. Boileau and J. Porti. Geometrization of 3-orbifolds of cyclic type. Preprint (1999). G. Burde and H. Zieschang. Knots. Studies in Mathematics 5 (de Gruyter, 1985). R. Crowell and R. Fox. Introduction to knot theory (Ginn and Company, 1963). D. Cooper and D. D. Long. Remarks on the A-polynomial of a knot. J. Knot Theory and its Ramifications 5 (1996), 609–628. M. Culler and P. B. Shalen. Varieties of group representations and splitting of 3-manifolds. Ann. Math. 117 (1983), 109–146. G. de Rham. Introduction aux polynomes d'un noeud. Enseign. Math. (2) 13 (1967), 187–194. ) F. González-Acu~na and J. M. Montesinos. On the character variety of group representations in SL(2,C) and PSL(2,C). Math. Z. 214 (1993), 627–652. M. Heusener. SO3(R)-representation curves for two-bridge knot groups. Math. Ann. 298 (1994), 327–348. C. Hodgson and S. Kerckhoff. Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery. J. Diff. Geom. 48 (1998), 1–59. MR1622600 (99b:57030) H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. The arithmeticity of the Figure Eight knot orbifold. in TOPOLOGY '90. Ohio State University, Math. Research Inst. Pub. 1 (eds. B. Apanasov, W. Neumann, A. Reid and L. Siebenmann) (De Gruyter, 1992), pp. 169–183. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. On the character variety of group representations of a 2-bridge link p/3 into PSL(2,C). B. Soc. Mat. Mexicana. 37 (1992), 241–262. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant. J. Knot Theory and its Ramifications 4 (1995), 81–114. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. On volumes and Chern–Simons invariants of geometric 3-manifolds. J. Math. Sci. Uni. Tokyo. 3 (1996), 723–744. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. Volumes and Chern–Simons invariants of cyclic coverings over rational knots. in Topology and Teichmüller spaces (eds. S. Kojima et al.), (World Scientific Pub. Co., 1996), pp. 31–55. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. The Chern–Simons invariants of hyperbolic manifolds via covering spaces. Bull. London Math. Soc. 31 (1999), 354–366. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. On the character variety of tunnel number one knots (preprint, 1999). E. Klassen. Representations of knot groups in SU(2). Trans. Am. Math. Soc. 326 (1991), 795–828. S. Kojima. Nonsingular parts of hyperbolic 3-cone-manifolds. in Topology and Teichmüller spaces (eds. S. Kojima et al.) (World Scientific Pub. Co., 1996), pp. 115–122. K. Kodama and M. Sakuma. Symmetry groups of prime knots up to 10 crossings. in Knots 90 (ed. A. Kawauchi) (Walter de Gruyter & Co., 1992), pp. 323–340. Y. Matsumoto and J. M. Montesinos-Amilibia. A proof of Thurston's uniformation theorem of geometric orbifolds. Tokyo J. Math. 14 (1991), 181–196. T. Ohtsuki. Ideal points and incompressible surfaces in two-bridge knot complements. J. Math. Soc. Japan. 46 (1994), 51–87. J. Porti. Regenerating hyperbolic and spherical cone structures from Euclidean ones. Topology 37 (1998), 365–392. R. Riley. Algebra for Heckoid groups. Trans. Am. Math. Soc. 334 (1992), 389–409. D. Rolfsen. Knots and links (Publish or Perish, Inc., 1976). E. Suárez. Poliedros de Dirichlet de 3-variedades cónicas y sus deformaciones. Ph.D. thesis (1998). W. Thurston. The geometry and topology of 3-manifolds. Notes 1976–1978. Princeton University Press (to appear). A. Whitemore. On representations of the group of Listing's knot by subgroups of PSL(2,C) Proc. Amer. Math. Soc. 40 (1973), 379–482.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos60.pdf
Size:
773.81 KB
Format:
Adobe Portable Document Format

Collections