Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Resonance fluorescence spectrum of a \Lambda-type quantum emitter close to a metallic nanoparticle

dc.contributor.authorCarreño Sánchez, Fernando
dc.contributor.authorAntón Revilla, Miguel Ángel
dc.contributor.authorYannopapas, V.
dc.contributor.authorPaspalakis, E.
dc.date.accessioned2023-06-18T06:54:42Z
dc.date.available2023-06-18T06:54:42Z
dc.date.issued2016-07-19
dc.descriptionAceptado el 5 de julio de 2016. Publicado el 19 July 2016
dc.description.abstractWe theoretically study the resonance fluorescence spectrum of a three-level quantum emitter coupled to a spherical metallic nanoparticle. We consider the case that the quantum emitter is driven by a single laser field along one of the optical transitions. We show that the development of the spectrum depends on the relative orientation of the dipole moments of the optical transitions in relation to the metal nanoparticle. In addition, we demonstrate that the location and width of the peaks in the spectrum are strongly modified by the exciton-plasmon coupling and the laser detuning, allowing to achieve controlled strongly subnatural spectral line. A strong antibunching of the fluorescent photons along the undriven transition is also obtained. Our results may be used for creating a tunable source of photons which could be used for a probabilistic entanglement scheme in the field of quantum information processing.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38442
dc.identifier.doi10.1103/PhysRevA.94.013834
dc.identifier.issn2469-9926
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.94.013834
dc.identifier.relatedurlhttps://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.013834
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24564
dc.issue.number1
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.page.initial013834
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2013-41709-P
dc.relation.projectIDGR3/14-910133
dc.rights.accessRightsopen access
dc.subject.cdu539.2:620.1
dc.subject.cdu535.33
dc.subject.cdu535.14
dc.subject.keywordResonance
dc.subject.keywordFluorescence spectrum
dc.subject.keywordQuatum emitter
dc.subject.keywordQuantum information processing
dc.subject.keywordMetal nanoparticle
dc.subject.ucmÓptica (Física)
dc.subject.ucmPartículas
dc.subject.ucmTeoría de los quanta
dc.subject.unesco2209.19 Óptica Física
dc.subject.unesco2208 Nucleónica
dc.subject.unesco2210.23 Teoría Cuántica
dc.titleResonance fluorescence spectrum of a \Lambda-type quantum emitter close to a metallic nanoparticle
dc.typejournal article
dc.volume.number94
dcterms.references[1] K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002). [2] W. Zhang, A. O. Govorov, G. W. Bryant, Phys. Rev. Lett. 97, 146804 (2006). [3] R. D. Artuso, G. W. Bryant, Nano Lett. 8, 2106 (2008). [4] A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, R. R. Naik, Nano Lett. 6, 984 (2006). [5] V. V. Klimov, M. Ducloy, V. S. Letokhov, Eur. Phys. J. D 20, 133 (2002). [6] A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, R. R. Naik, Nano Lett. 6, 984 (2006). [7] A. Manjavacas, F. J. Garc ́ıa de Abajo, P. Nordlander, Nano Lett. 11, 2318 (2011). [8] A. Manjavacas, P. Nordlander, F. J. Garc ́ıa de Abajo, ACS Nano 2, 1724 (2012). [9] F. H. L. Koppens, D. E. Chang, F. J. Garc ́ıa de Abajo, Nano Lett. 11, 3370 (2011). [10] T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, M. H. Mikkelsen, Nature Commun. 6, 7788 (2015). [11] T. B. Hoang, G. M. Akselrod, M. H. Mikkelsen, Nano Lett. 16, 270 (2016). [12] D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, X. Li, Nano Lett. 11, 1049 (2011). [13] A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, S. Savasta, Phys. Rev. Lett. 105, 263601 (2010). [14] Y. Gu, L. Huang, O. J. F. Martin, Q. Gong, Phys. Rev. B 81, 193103 (2010). [15] Y. V. Vladimirova, V. V. Klimov, V. M. Pastukhov, V. N. Zadkov, Phys. Rev. A 85, 053408 (2012). [16] E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. V. Dorofeenko, A. A. Lisyansky, Jetp Lett. 97 452 (2013). [17] F. Carre ̃no, M. A. Ant ́on, F. Arrieta-Y ́a ̃nez, Phys Rev. B 88, 195303 (2013). [18] R.C. Ge, C. Van Vlack, P. Yao, J. F. Young, S. Hughes Phys. Rev. B 87, 205425 (2013). [19] J. Hakami, L. Wang, M. S. Zubairy, Phys. Rev. A 89, 053835 (2014). [20] V. Yannopapas, E. Paspalakis, N. V. Vitanov, Phys. Rev. Lett. 103, 063602 (2009). [21] S. Evangelou, V. Yannopapas, E. Paspalakis, Phys. Rev. A 83, 023819 (2011). [22] Y. Gu, L. Wang, P. Ren, J.-X. Zhang, T.-C. Zhang, O. J. F. Martin, Q.-H. Gong, Nano Lett. 12, 2488 (2012). [23] M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, Q.-Q. Wang, Opt. Lett. 32, 2125 (2007). [24] S. M. Sadeghi, Phys. Rev. B 79, 233309 (2009). [25] M. A. Ant ́on, F. Carre ̃no, S. Melle, O. G. Calder ́on, E. Cabrera- Granado, J. Cox, M. R. Singh, Phys. Rev. B 86, 155305 (2012). [26] E. Paspalakis, S. Evangelou, A. F. Terzis, Phys. Rev. B 87, 235302 (2013). [27] A. V. Malyshev, V. A. Malyshev, Phys. Rev. B 84, 035314 (2011). [28] I. Thanopulos, E. Paspalakis, V. Yannopapas, Phys. Rev. B 85, 035111 (2012). [29] M. R. Singh, Nanotechnology 24, 125701 (2013). [30] J. D. Cox, M. R. Singh, M. A. Ant ́on, F. Carre ̃no, J. Phys. Condens. Matter. 25, 385302 (2013). [31] J. D. Cox, M. R. Singh, C. von Bilderling, A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013). [32] B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, J. Knoester, J. Chem. Phys. 139, 014303 (2013). [33] E. Paspalakis, S. Evangelou, S. G. Kosionis, A. F. Terzis, J. Appl. Phys. 115 083106 (2014). [34] S. Evangelou, V. Yannopapas, E. Paspalakis, J. Mod. Opt. 61, 1458 (2014). [35] H. T. Dung, L. Knoll, D. G. Welsch, Phys Rev. A 66, 063810 (2002). [36] M. O. Scully, M. S. Zubairy, Quantum Optics, 1997 Cambridge University Press. [37] M. Lax, Phys. Rev. 172, 350 (1968). [38] P.B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972). [39] J. D. Jackson, Classical Electrodynamics, 1999 Wiley, New York. [40] V. Yannopapas, N. V. Vitanov, Phys. Rev. B 75, 115124 (2007). [41] H. J. Kimble, L. Mandel, Phys. Rev. A 13, 2123 (1976). [42] H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977). [43] D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. W ̈ust, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, Science 325, 70 (2009). [44] A. N. Vamivakas, Y. Zhao, Chao-Yang Lu, M. Atat ̈ure, Nat. Phys. 5, 198 (2009). [45] H. S. Nguyen, G. Sallen, C. Voisin, Ph. Roussignol, C. Diederichs, G. Cassabois, Appl. Phys. Lett. 99, 261904 (2011). [46] C. Matthiesen, A. N. Vamivakas, M. Atat ̈ure, Phys. Rev. Lett. 108, 093602 (2012). [47] K. Konthasinghe, M. Peiris, B. Petrak, Y. Yu, Z. C. Niu, A. Muller, Opt. Lett. 40, 1846 (2015). [48] G. Fernandez, T. Volz, R. Desbuquois, A. Badolato, A. Imamoglu, Phys. Rev. Lett. 103, 087406 (2009). [49] Y. He, Y. -M. He, Y. -J. Wei, X. Jiang, M. -C. Chen, F. -L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. H ̈ofling, C. -Y. Lu, J. -W. Pan, Phys. Rev. Lett. 111, 237403 (2013). [50] C. Santori, D. Fattal, K-M. C. Fu, P. E. Barclay, R. G. Beausoleil, New J. Phys. 11, 123009 (2009). [51] T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, D. Gammon, Nat. Phot. 8, 442 (2014). [52] A. Urba ́nczyk, G. J. Hamhuis, R. N ̈otzel, Appl. Phys. Lett. 96, 113101 (2010). [53] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, Science 329, 930 (2010). [54] M. Pfeiffer, K. Lindfors , H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastell, O. G. Schmidt, H. Giessen, M. Lippitz, Nano Lett. 14,197 (2014). [55] S-H. Gong, J-H. Kim, Y-H. Ko, C. Rodriguez, J. Shin, Y-H. Lee, L. S. Dang, X. Zhang, Y-H. Cho, Proc. Nat. Acad. Sci. 112, 5280 (2015). [56] A. A. Lyamkina, K. Schraml, A. Regler, M. Schalk, A. K. Bakarov, A. I. Toropov, S. P. Moshchenko, M. Kaniber, Monolithically integrated single quantum dots coupled to bowtie nanoantennas, arXiv:1603.07093v1.
dspace.entity.typePublication
relation.isAuthorOfPublication70ad6ca8-0e1b-49d4-a046-8d693ca88c5a
relation.isAuthorOfPublicationa59c3727-c018-4ce7-84d5-24f3a2f3de79
relation.isAuthorOfPublication.latestForDiscovery70ad6ca8-0e1b-49d4-a046-8d693ca88c5a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Resonance Fluorescence2016junio.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format

Collections