Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Resonance fluorescence spectrum of a \Lambda-type quantum emitter close to a metallic nanoparticle

Loading...
Thumbnail Image

Full text at PDC

Publication date

2016

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

We theoretically study the resonance fluorescence spectrum of a three-level quantum emitter coupled to a spherical metallic nanoparticle. We consider the case that the quantum emitter is driven by a single laser field along one of the optical transitions. We show that the development of the spectrum depends on the relative orientation of the dipole moments of the optical transitions in relation to the metal nanoparticle. In addition, we demonstrate that the location and width of the peaks in the spectrum are strongly modified by the exciton-plasmon coupling and the laser detuning, allowing to achieve controlled strongly subnatural spectral line. A strong antibunching of the fluorescent photons along the undriven transition is also obtained. Our results may be used for creating a tunable source of photons which could be used for a probabilistic entanglement scheme in the field of quantum information processing.

Research Projects

Organizational Units

Journal Issue

Description

Aceptado el 5 de julio de 2016. Publicado el 19 July 2016

Keywords

Collections