Positive semidefinite germs on the cone
dc.contributor.author | Fernando Galván, José Francisco | |
dc.contributor.author | Ruiz Sancho, Jesús María | |
dc.date.accessioned | 2023-06-20T16:51:17Z | |
dc.date.available | 2023-06-20T16:51:17Z | |
dc.date.issued | 2002 | |
dc.description.abstract | We show that any positive semidefinite analytic function germ on the cone z(2) = x(2) + y(2) is a sum of two squares of analytic function germs. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15235 | |
dc.identifier.doi | 10.2140/pjm.2002.205.109 | |
dc.identifier.issn | 0030-8730 | |
dc.identifier.officialurl | http://msp.berkeley.edu/pjm/2002/205-1/pjm-v205-n1-p05-s.pdf | |
dc.identifier.relatedurl | http://msp.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57239 | |
dc.issue.number | 1 | |
dc.journal.title | Pacific Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 118 | |
dc.page.initial | 109 | |
dc.publisher | Pacific Journal of Mathematics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Analytic function germs | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Positive semidefinite germs on the cone | |
dc.type | journal article | |
dc.volume.number | 205 | |
dcterms.references | C. Andradas, L. Br¨ocker and J.M. Ruiz, Constructible Sets in Real Geometry,Ergeb. Math., 33, Springer Verlag, Berlin-Heidelberg-New York, 1996,MR 98e:14056, Zbl 0873.14044. S.Basarab, V. Nica and D. Popescu,Approximation properties and existencial completeness for ring morphisms, Manuscripta Math., 33 (1981), 227-282,MR 82k:03047, Zbl 0472.13013. M.D. Choi, Z.D. Dai, T.Y. Lam and B. Reznick, The Pythagoras number of some affine algebras and local algebras, J. Reine Angew. Math., 336 (1982),45-82, MR 84f:12012, Zbl 0523.14020. P. Jaworski, About estimates on mumber of squares necessary to represent a positive-semidefinite analytic function, Arch. Math., 58 (1992), 276-279,MR 93c:32008, Zbl 0748.14021. J.Ortega, On the Pythagoras number of a realirreducible algebroid curve, Math.Ann., 289 (1991), 111-123, MR 92a:14065, Zbl 0743.14041. G. P´olya and G. Szeg¨o, Problems and Theorems in Analysis I & II,Springer Study Edition, Springer Verlag, New York-Heidelberg-Berlin, 1976,MR 49 #8782, MR 53 #2. R. Quarez, Pythagoras numbers of real algebroid curves and Gram matrices, J.Algebra, 238(1) (2001), 139-158. J.M. Ruiz, The Basic Theory of Power Series, Advanced Lectures in Mathematics,Vieweg Verlag, Braunschweig Wiesbaden, 1993, MR 94i:13012. Sums of two squares in analytic rings, Math. Z., 230 (1999), 317-328,Zbl 0930.32007. R.J. Walker, Algebraic Curves, Springer Verlag, Berlin-Heidelberg-New York, | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 499732d5-c130-4ea6-8541-c4ec934da408 | |
relation.isAuthorOfPublication | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 | |
relation.isAuthorOfPublication.latestForDiscovery | 499732d5-c130-4ea6-8541-c4ec934da408 |
Download
Original bundle
1 - 1 of 1