Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Positive semidefinite germs on the cone

dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T16:51:17Z
dc.date.available2023-06-20T16:51:17Z
dc.date.issued2002
dc.description.abstractWe show that any positive semidefinite analytic function germ on the cone z(2) = x(2) + y(2) is a sum of two squares of analytic function germs.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15235
dc.identifier.doi10.2140/pjm.2002.205.109
dc.identifier.issn0030-8730
dc.identifier.officialurlhttp://msp.berkeley.edu/pjm/2002/205-1/pjm-v205-n1-p05-s.pdf
dc.identifier.relatedurlhttp://msp.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57239
dc.issue.number1
dc.journal.titlePacific Journal of Mathematics
dc.language.isoeng
dc.page.final118
dc.page.initial109
dc.publisherPacific Journal of Mathematics
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.cdu512.7
dc.subject.keywordAnalytic function germs
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titlePositive semidefinite germs on the cone
dc.typejournal article
dc.volume.number205
dcterms.referencesC. Andradas, L. Br¨ocker and J.M. Ruiz, Constructible Sets in Real Geometry,Ergeb. Math., 33, Springer Verlag, Berlin-Heidelberg-New York, 1996,MR 98e:14056, Zbl 0873.14044. S.Basarab, V. Nica and D. Popescu,Approximation properties and existencial completeness for ring morphisms, Manuscripta Math., 33 (1981), 227-282,MR 82k:03047, Zbl 0472.13013. M.D. Choi, Z.D. Dai, T.Y. Lam and B. Reznick, The Pythagoras number of some affine algebras and local algebras, J. Reine Angew. Math., 336 (1982),45-82, MR 84f:12012, Zbl 0523.14020. P. Jaworski, About estimates on mumber of squares necessary to represent a positive-semidefinite analytic function, Arch. Math., 58 (1992), 276-279,MR 93c:32008, Zbl 0748.14021. J.Ortega, On the Pythagoras number of a realirreducible algebroid curve, Math.Ann., 289 (1991), 111-123, MR 92a:14065, Zbl 0743.14041. G. P´olya and G. Szeg¨o, Problems and Theorems in Analysis I & II,Springer Study Edition, Springer Verlag, New York-Heidelberg-Berlin, 1976,MR 49 #8782, MR 53 #2. R. Quarez, Pythagoras numbers of real algebroid curves and Gram matrices, J.Algebra, 238(1) (2001), 139-158. J.M. Ruiz, The Basic Theory of Power Series, Advanced Lectures in Mathematics,Vieweg Verlag, Braunschweig Wiesbaden, 1993, MR 94i:13012. Sums of two squares in analytic rings, Math. Z., 230 (1999), 317-328,Zbl 0930.32007. R.J. Walker, Algebraic Curves, Springer Verlag, Berlin-Heidelberg-New York,
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
16.pdf
Size:
147.45 KB
Format:
Adobe Portable Document Format

Collections