On the semialgebraic Stone-Čech compactification of a semialgebraic set
dc.contributor.author | Fernando Galván, José Francisco | |
dc.contributor.author | Gamboa Mutuberria, José Manuel | |
dc.date.accessioned | 2023-06-20T00:15:56Z | |
dc.date.available | 2023-06-20T00:15:56Z | |
dc.date.issued | 2012 | |
dc.description.abstract | In the same vein as the classical Stone–ˇCech compactification, we prove in this work that the maximal spectra of the rings of semialgebraic and bounded semialgebraic functions on a semialgebraic set M ⊂ Rn, which are homeomorphic topological spaces, provide the smallest Hausdorff compactification of M such that each bounded R-valued semialgebraic function on M extends continuously to it. Such compactification β∗sM, which can be characterized as the smallest compactification that dominates all semialgebraic compactifications of M, is called the semialgebraic Stone– ˇ Cech compactification of M, although it is very rarely a semialgebraic set. We are also interested in determining the main topological properties of the remainder ∂M = β∗sM \M and we prove that it has finitely many connected components and that this number equals the number of connected components of the remainder of a suitable semialgebraic compactification of M. Moreover, ∂M is locally connected and its local compactness can be characterized just in terms of the topology of M. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Banco de Santander | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16315 | |
dc.identifier.doi | 10.1090/S0002-9947-2012-05428-6 | |
dc.identifier.issn | 1088-6850 | |
dc.identifier.officialurl | http://www.ams.org/journals/tran/2012-364-07/S0002-9947-2012-05428-6/S0002-9947-2012-05428-6.pdf | |
dc.identifier.relatedurl | http://www.ams.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42296 | |
dc.issue.number | 364 | |
dc.journal.title | Transactions of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 3511 | |
dc.page.initial | 3479 | |
dc.publisher | American Mathematical Society | |
dc.relation.projectID | GAAR MTM2011-22435 | |
dc.relation.projectID | PR34/07-15813 | |
dc.relation.projectID | GAAR Grupos UCM 910444 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Semialgebraic function | |
dc.subject.keyword | maximal spectrum | |
dc.subject.keyword | semialgebraic compactification | |
dc.subject.keyword | semialgebraic Stone–Čech compactification | |
dc.subject.keyword | remainder | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | On the semialgebraic Stone-Čech compactification of a semialgebraic set | |
dc.type | journal article | |
dcterms.references | Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. Nicolas Bourbaki, General topology. Chapters 1–4, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1966 edition. Hans Delfs and Manfred Knebusch, Separation, retractions and homotopy extension in semialgebraic spaces, Pacific J. Math. 114 (1984), no. 1, 47–71. J.F. Fernando: On chains of prime ideals in rings of semialgebraic functions. Preprint RAAG (2010). http://www.mat.ucm.es/josefer/pdfs/preprint/chains.pdf J.F. Fernando: On distinguished points of the remainder of the semialgebraic Stone-Čech compactification of a semialgebraic set. Preprint RAAG (2010). http://www.mat.ucm.es/josefer/pdfs/preprint/remainder.pdf J.F. Fernando, J.M. Gamboa: On Łojasiewicz's inequality and the Nullstellensatz for rings of semialgebraic functions. Preprint RAAG (2010). http://www.mat.ucm.es/josefer/pdfs/preprint/null-loj.pdf J.F. Fernando, J.M. Gamboa: On the Krull dimension of rings of semialgebraic functions. Preprint RAAG (2010). http://www.mat.ucm.es/josefer/pdfs/preprint/dim.pdf J.F. Fernando, J.M. Gamboa: On the spectra of rings of semialgebraic functions. Collect. Math., to appear (2012). J.F. Fernando, J.M. Gamboa: On Banach-Stone type theorems in the semialgebraic setting. Preprint RAAG (2010). http://www.mat.ucm.es/josefer/pdfs/preprint/homeo.pdf Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960 Giuseppe De Marco and Adalberto Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc. 30 (1971), 459–466. James R. Munkres, Topology: a first course, Prentice-Hall Inc., Englewood Cliffs, N.J., 1975. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 499732d5-c130-4ea6-8541-c4ec934da408 | |
relation.isAuthorOfPublication | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 | |
relation.isAuthorOfPublication.latestForDiscovery | 499732d5-c130-4ea6-8541-c4ec934da408 |
Download
Original bundle
1 - 1 of 1