Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the semialgebraic Stone-Čech compactification of a semialgebraic set

Loading...
Thumbnail Image

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Mathematical Society
Citations
Google Scholar

Citation

Abstract

In the same vein as the classical Stone–ˇCech compactification, we prove in this work that the maximal spectra of the rings of semialgebraic and bounded semialgebraic functions on a semialgebraic set M ⊂ Rn, which are homeomorphic topological spaces, provide the smallest Hausdorff compactification of M such that each bounded R-valued semialgebraic function on M extends continuously to it. Such compactification β∗sM, which can be characterized as the smallest compactification that dominates all semialgebraic compactifications of M, is called the semialgebraic Stone– ˇ Cech compactification of M, although it is very rarely a semialgebraic set. We are also interested in determining the main topological properties of the remainder ∂M = β∗sM \M and we prove that it has finitely many connected components and that this number equals the number of connected components of the remainder of a suitable semialgebraic compactification of M. Moreover, ∂M is locally connected and its local compactness can be characterized just in terms of the topology of M.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections