Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Dirichlet problem on Lorentz and Orlicz spaces with applications to Schwarz-Christoffel domains

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

M.J. Carro, C. Ortiz-Caraballo, On the Dirichlet problem on Lorentz and Orlicz spaces with applications to Schwarz–Christoffel domains, Journal of Differential Equations 265 (2018) 2013–2033. https://doi.org/10.1016/j.jde.2018.04.028.

Abstract

It is known (see [14]) that, for every Lipschitz domain on the plane Ω = {x + iy : y > ν(x)}, with ν a real valued Lipschitz function, there exists 1 ≤ p0 < 2 so that the Dirichlet problem has a solution for every function f ∈ Lp(ds) and every p ∈ (p0,∞). Moreover, if p0 > 1, the result is false for every p ≤ p0. The purpose of this paper is to study in more detail what happens at the endpoint p0; that is, we want to find spaces X ⊂ Lp0 so that the Dirichlet problem is solvable for every f ∈ X. These spaces X will be either the Lorentz space Lp0,1(ds) or some type of logarithmic Orlicz space. Our results will be applied to the special case of Schwarz–Christoffel Lipschitz domains, among others, for which we explicitly compute the value of p0.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections