On the Dirichlet problem on Lorentz and Orlicz spaces with applications to Schwarz-Christoffel domains
dc.contributor.author | Carro Rossell, María Jesús | |
dc.contributor.author | Ortiz Caraballo, Carmen | |
dc.date.accessioned | 2024-01-17T17:36:01Z | |
dc.date.available | 2024-01-17T17:36:01Z | |
dc.date.issued | 2018 | |
dc.description.abstract | It is known (see [14]) that, for every Lipschitz domain on the plane Ω = {x + iy : y > ν(x)}, with ν a real valued Lipschitz function, there exists 1 ≤ p0 < 2 so that the Dirichlet problem has a solution for every function f ∈ Lp(ds) and every p ∈ (p0,∞). Moreover, if p0 > 1, the result is false for every p ≤ p0. The purpose of this paper is to study in more detail what happens at the endpoint p0; that is, we want to find spaces X ⊂ Lp0 so that the Dirichlet problem is solvable for every f ∈ X. These spaces X will be either the Lorentz space Lp0,1(ds) or some type of logarithmic Orlicz space. Our results will be applied to the special case of Schwarz–Christoffel Lipschitz domains, among others, for which we explicitly compute the value of p0. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.status | pub | |
dc.identifier.citation | M.J. Carro, C. Ortiz-Caraballo, On the Dirichlet problem on Lorentz and Orlicz spaces with applications to Schwarz–Christoffel domains, Journal of Differential Equations 265 (2018) 2013–2033. https://doi.org/10.1016/j.jde.2018.04.028. | |
dc.identifier.doi | 10.1016/j.jde.2018.04.028 | |
dc.identifier.issn | 1090-2732 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.jde.2018.04.028 | |
dc.identifier.relatedurl | https://www.sciencedirect.com/science/article/pii/S0022039618302195#bl0010 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/93676 | |
dc.issue.number | 5 | |
dc.journal.title | Journal of Differential Equations | |
dc.language.iso | eng | |
dc.page.final | 2033 | |
dc.page.initial | 2013 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2016-75196-P | |
dc.rights.accessRights | open access | |
dc.subject.keyword | Dirichlet problem | |
dc.subject.keyword | Muckenhoupt weights | |
dc.subject.keyword | Yano's extrapolation | |
dc.subject.keyword | Lorentz spaces | |
dc.subject.keyword | Orlicz spaces | |
dc.subject.ucm | Ciencias | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | On the Dirichlet problem on Lorentz and Orlicz spaces with applications to Schwarz-Christoffel domains | en |
dc.type | journal article | |
dc.type.hasVersion | AM | |
dc.volume.number | 265 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | acc8e1a8-fd56-4017-bb13-dd3a66c88eaa | |
relation.isAuthorOfPublication.latestForDiscovery | acc8e1a8-fd56-4017-bb13-dd3a66c88eaa |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- On_the_Dirichlet_problem.pdf
- Size:
- 316.79 KB
- Format:
- Adobe Portable Document Format