Introducción al cálculo fraccionario y a los modelos de crecimiento tumoral clásicos y fraccionarios
Loading...
Official URL
Full text at PDC
Publication date
2020
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Se presenta una recopilación de las ideas y definiciones esenciales del cálculo fraccionario y su aplicación a la resolución de ecuaciones diferenciales fraccionarias. Damos al cálculo fraccionario un contexto histórico, incluyendo la resolución del problema de Abel, definimos los diferentes operadores fraccionarios y los espacios funcionales donde vamos a trabajar, y por último introducimos la transformada de Laplace de los operadores definidos como herramienta para resolver ecuaciones diferenciales fraccionarias analíticamente y el método de Grünwald-Letnikov para la resolución numérica.
In this work we present a compilation of the essential ideas and definitions of fractional calculus and their application to resolution of fractional differential equations. We give the fractional calculus a historical context, including the resolution of the Abel problem, we define the different fractional operators and the functional spaces where we are going to work, and finally introduce the Laplace transform of the operators define as a tool to solve analytically fractional differential equations and the Grünwald-Letnikov method for numerical resolution.
In this work we present a compilation of the essential ideas and definitions of fractional calculus and their application to resolution of fractional differential equations. We give the fractional calculus a historical context, including the resolution of the Abel problem, we define the different fractional operators and the functional spaces where we are going to work, and finally introduce the Laplace transform of the operators define as a tool to solve analytically fractional differential equations and the Grünwald-Letnikov method for numerical resolution.