Determination of phenolic compounds in residual brewing yeast using matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles

Loading...
Thumbnail Image
Full text at PDC
Publication date

2019

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Citation
Gómez-Mejía E, Rosales-Conrado N, León-González ME, Madrid Y, Determination of phenolic compounds in residual brewing yeastusing matrix solid-phase dispersion extraction assisted by titaniumdioxide nanoparticles 2019, 1601:255-265
Abstract
A simple and efficient low-cost matrix solid-phase dispersion (MSPD) extraction based on TiO2nanopar-ticles (NPs) and diatomaceous earth has been developed for the recovery of phenolic compounds fromresidual brewing yeast. Experimental conditions for MSPD extraction were optimized by an experimen-tal design approach. A screening factorial design plus replicates at the center point, followed by surfaceresponse analysis were used. The simultaneous identification and quantification of eleven main nat-ural polyphenols: caffeic, chlorogenic, p-coumaric, 3,4-dihydroxibenzoic, trans-ferulic and gallic acids,kaempferol, myricetin, naringin, quercetin and rutin, was possible by combining MSPD and capillaryliquid chromatography couple to a diode array detection system (cLC-DAD) and liquid chromatogra-phy couple to a triple quadrupole analyzer (LC–MS/MS). Moreover, residual brewing yeast extracts wereevaluated in terms of DPPH (1,1-diphenyl–2 picrylhydrazyl) free radical scavenging activity. Polyphenol-nanoparticle interaction was studied by UV–vis spectroscopy and electron transmission microscopy(TEM), pointing out a stable interplay that assists phenolic isolation. The extracted polyphenol quan-tities were within the 3.2-1,500 g g−1range, and the high antioxidant activity estimated suggested thatdeveloped MSPD is a successful, simple, efficient and rapid method for the extraction and recovery of bioactive phenolic compounds, which promotes the reuse and re-evaluation of brewing yeast agri-foodby-products.
Research Projects
Organizational Units
Journal Issue
Description
Keywords
Collections