Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An Approach to Canonical Correlation Analysis Based on Rényi’s Pseudodistances

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Citations
Google Scholar

Citation

Abstract

Canonical Correlation Analysis (CCA) infers a pairwise linear relationship between two groups of random variables, 𝑿 and 𝒀. In this paper, we present a new procedure based on Rényi’s pseudodistances (RP) aiming to detect linear and non-linear relationships between the two groups. RP canonical analysis (RPCCA) finds canonical coefficient vectors, 𝒂 and 𝒃, by maximizing an RP-based measure. This new family includes the Information Canonical Correlation Analysis (ICCA) as a particular case and extends the method for distances inherently robust against outliers. We provide estimating techniques for RPCCA and show the consistency of the proposed estimated canonical vectors. Further, a permutation test for determining the number of significant pairs of canonical variables is described. The robustness properties of the RPCCA are examined theoretically and empirically through a simulation study, concluding that the RPCCA presents a competitive alternative to ICCA with an added advantage in terms of robustness against outliers and data contamination.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections