An Approach to Canonical Correlation Analysis Based on Rényi’s Pseudodistances
dc.contributor.author | Jaenada Malagón, María | |
dc.contributor.author | Miranda Menéndez, Pedro | |
dc.contributor.author | Pardo Llorente, Leandro | |
dc.contributor.author | Zografos, Konstantinos | |
dc.date.accessioned | 2023-07-20T06:25:43Z | |
dc.date.available | 2023-07-20T06:25:43Z | |
dc.date.issued | 2023-04-25 | |
dc.description.abstract | Canonical Correlation Analysis (CCA) infers a pairwise linear relationship between two groups of random variables, 𝑿 and 𝒀. In this paper, we present a new procedure based on Rényi’s pseudodistances (RP) aiming to detect linear and non-linear relationships between the two groups. RP canonical analysis (RPCCA) finds canonical coefficient vectors, 𝒂 and 𝒃, by maximizing an RP-based measure. This new family includes the Information Canonical Correlation Analysis (ICCA) as a particular case and extends the method for distances inherently robust against outliers. We provide estimating techniques for RPCCA and show the consistency of the proposed estimated canonical vectors. Further, a permutation test for determining the number of significant pairs of canonical variables is described. The robustness properties of the RPCCA are examined theoretically and empirically through a simulation study, concluding that the RPCCA presents a competitive alternative to ICCA with an added advantage in terms of robustness against outliers and data contamination. | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación | |
dc.description.status | pub | |
dc.identifier.doi | 10.3390/e25050713 | |
dc.identifier.issn | 1099-4300 | |
dc.identifier.officialurl | https://www.mdpi.com/1099-4300/25/5/713 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/87289 | |
dc.issue.number | 5 | |
dc.journal.title | Entropy | |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PID2021-124933NB-I00 | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.cdu | 519.237 | |
dc.subject.keyword | Information canonical correlation analysis | |
dc.subject.keyword | Kullback-Leibler divergence | |
dc.subject.keyword | Mutual information | |
dc.subject.keyword | Renyi's pseudodistances | |
dc.subject.keyword | Robustness | |
dc.subject.keyword | Consistency | |
dc.subject.ucm | Estadística matemática (Matemáticas) | |
dc.subject.unesco | 1209.09 Análisis Multivariante | |
dc.title | An Approach to Canonical Correlation Analysis Based on Rényi’s Pseudodistances | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 25 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 931cc892-86a0-4d44-9343-7b54535c00a2 | |
relation.isAuthorOfPublication | d940fcaa-13c3-4bad-8198-1025a668ed71 | |
relation.isAuthorOfPublication | a6409cba-03ce-4c3b-af08-e673b7b2bf58 | |
relation.isAuthorOfPublication | 931cc892-86a0-4d44-9343-7b54535c00a2 | |
relation.isAuthorOfPublication.latestForDiscovery | 931cc892-86a0-4d44-9343-7b54535c00a2 |
Download
Original bundle
1 - 1 of 1