Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

An Approach to Canonical Correlation Analysis Based on Rényi’s Pseudodistances

dc.contributor.authorJaenada Malagón, María
dc.contributor.authorMiranda Menéndez, Pedro
dc.contributor.authorPardo Llorente, Leandro
dc.contributor.authorZografos, Konstantinos
dc.date.accessioned2023-07-20T06:25:43Z
dc.date.available2023-07-20T06:25:43Z
dc.date.issued2023-04-25
dc.description.abstractCanonical Correlation Analysis (CCA) infers a pairwise linear relationship between two groups of random variables, 𝑿 and 𝒀. In this paper, we present a new procedure based on Rényi’s pseudodistances (RP) aiming to detect linear and non-linear relationships between the two groups. RP canonical analysis (RPCCA) finds canonical coefficient vectors, 𝒂 and 𝒃, by maximizing an RP-based measure. This new family includes the Information Canonical Correlation Analysis (ICCA) as a particular case and extends the method for distances inherently robust against outliers. We provide estimating techniques for RPCCA and show the consistency of the proposed estimated canonical vectors. Further, a permutation test for determining the number of significant pairs of canonical variables is described. The robustness properties of the RPCCA are examined theoretically and empirically through a simulation study, concluding that the RPCCA presents a competitive alternative to ICCA with an added advantage in terms of robustness against outliers and data contamination.
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.statuspub
dc.identifier.doi10.3390/e25050713
dc.identifier.issn1099-4300
dc.identifier.officialurlhttps://www.mdpi.com/1099-4300/25/5/713
dc.identifier.urihttps://hdl.handle.net/20.500.14352/87289
dc.issue.number5
dc.journal.titleEntropy
dc.language.isoeng
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//PID2021-124933NB-I00
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu519.237
dc.subject.keywordInformation canonical correlation analysis
dc.subject.keywordKullback-Leibler divergence
dc.subject.keywordMutual information
dc.subject.keywordRenyi's pseudodistances
dc.subject.keywordRobustness
dc.subject.keywordConsistency
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209.09 Análisis Multivariante
dc.titleAn Approach to Canonical Correlation Analysis Based on Rényi’s Pseudodistances
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number25
dspace.entity.typePublication
relation.isAuthorOfPublication931cc892-86a0-4d44-9343-7b54535c00a2
relation.isAuthorOfPublicationd940fcaa-13c3-4bad-8198-1025a668ed71
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication931cc892-86a0-4d44-9343-7b54535c00a2
relation.isAuthorOfPublication.latestForDiscovery931cc892-86a0-4d44-9343-7b54535c00a2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
entropy-25-00713-v2.pdf
Size:
424.81 KB
Format:
Adobe Portable Document Format

Collections