Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Virial coefficients and demixing in the Asakura-Oosawa model

dc.contributor.authorLópez de Haro, Mariano
dc.contributor.authorFernández Tejero, Carlos
dc.contributor.authorSantos, Andrés
dc.contributor.authorYuste, Santos B.
dc.contributor.authorFiumara, Giacomo
dc.contributor.authorSaija, Franz
dc.date.accessioned2023-06-19T14:56:00Z
dc.date.available2023-06-19T14:56:00Z
dc.date.issued2015-01-07
dc.description© 2015 AIP Publishing LLC. M.L.H., A.S., and S.B.Y. acknowledge the financial support of the Spanish Government through Grant No. FIS2013-42840-P and the Junta de Extremadura (Spain) through Grant No. GR10158 (partially financed by FEDER funds). Thanks are also due to Professor Bob Evans for suggesting this problem to us and for rich and interesting discussions and a very fruitful exchange of correspondence.
dc.description.abstractThe problem of demixing in the Asakura-Oosawa colloid-polymer model is considered. The critical constants are computed using truncated virial expansions up to fifth order. While the exact analytical results for the second and third virial coefficients are known for any size ratio, analytical results for the fourth virial coefficient are provided here, and fifth virial coefficients are obtained numerically for particular size ratios using standard Monte Carlo techniques. We have computed the critical constants by successively considering the truncated virial series up to the second, third, fourth, and fifth virial coefficients. The results for the critical colloid and (reservoir) polymer packing fractions are compared with those that follow from available Monte Carlo simulations in the grand canonical ensemble. Limitations and perspectives of this approach are pointed out.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipJunta de Extremadura
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32945
dc.identifier.doi10.1063/1.4904891
dc.identifier.issn0021-9606
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4904891
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34844
dc.issue.number1
dc.journal.titleJournal of chemical physics
dc.language.isoeng
dc.page.final014902_7
dc.page.initial014902_1
dc.publisherAmerican Institute of Physics
dc.relation.projectIDFIS2013-42840-P
dc.relation.projectIDGR10158
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordColloid-polymer mixture
dc.subject.keywordHard-sphere mixtures
dc.subject.keywordEquation-of-state
dc.subject.keywordPhase-behavior
dc.subject.keywordBinary-mixtures
dc.subject.keywordSeparation
dc.subject.keywordSimulation
dc.subject.keywordFluid
dc.subject.keywordSuspensions
dc.subject.keywordDepletion
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleVirial coefficients and demixing in the Asakura-Oosawa model
dc.typejournal article
dc.volume.number142
dcterms.references1. Theory and Simulation of Hard-Sphere Fluids and Related Systems, Lectures Notes in Physics, edited by A. Mulero (Springer-Verlag, Berlin, 2008), Vol. 753. 2. D. Frenkel, J. Phys.: Condens. Matter 6, A71 (1994). 3. T. Biben and J.-P. Hansen, Physica A 235, 142 (1997). 4. S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954). 5. S. Asakura and F. Oosawa, J. Polym. Sci. 33, 183 (1958). 6. A. Vrij, Pure Appl. Chem. 48, 471 (1976). 7. K. Binder, P. Virnau, and A. Statt, J. Chem. Phys. 141, 140901 (2014). 8. A. P. Gast, C. K. Hall, and W. B. Russel, J. Colloid Interface Sci. 96, 251 (1983). 9. A. A. Louis, R. Finken, and J. P. Hansen, Phys. Rev. E 61, R1028 (2000). 10. F. Lo Verso, D. Pini, and L. Reatto,J. Phys.: Condens. Matter 17, 771 (2005). 11. H. N. W. Lekkerkerker, W. K. Poon, P. N. Pusey, A. Stroobants, and P. B. Warren, Europhys. Lett. 20, 559 (1992). 12. S. M. Ilett, A. Orrock, W. C.-K. Poon, and P. N. Pusey, Phys. Rev. E 51, 1344 (1995). 13. M. Fasolo and P. Sollich, J. Phys.: Condens. Matter 17, 797 (2005). 14. M. Fasolo and P. Sollich, J. Chem. Phys. 122, 074904 (2005). 15. M. Schmidt, H. Lowen, J. M. Brader, and R. Evans, Phys. Rev. Lett. 85, 1934 (2000). 16. M. Schmidt, H. Lowen, J. M. Brader, and R. Evans,J. Phys.: Condens. Matter 14, 9353 (2002). 17. P. Hopkins and M. Schmidt, J. Phys.: Condens. Matter 22, 325108 (2010). 18. M. Dijkstra, J. M. Brader, and R. Evans,J. Phys.: Condens. Matter 11, 10079 (1999). 19. M. Dijkstra, R. van Roij, and R. Evans, J. Chem. Phys. 113, 4799 (2000). 20. J. M. Brader, R. Evans, and M. Schmidt, Mol. Phys. 101, 3349 (2003). 21. E. J. Meijer and D. Frenkel, Phys. Rev. Lett. 67, 110 (1991). 22. E. J. Meijer and D. Frenkel, J. Chem. Phys. 100, 6873 (1994). 23. T. Biben, P. Bladon, and D. Frenkel, J. Phys.: Condens. Matter 8, 10799 (1996). 24. P. G. Bolhuis, A. A. Louis, and J.-P. Hansen, Phys. Rev. Lett. 89, 128302 (2002). 25. J. Dzubiella, C. N. Likos, and H. Löwen, J. Chem. Phys. 116, 9518 (2002). 26. R. L. C. Vink and J. Horbach, J. Chem. Phys. 121, 3253 (2004). 27. R. L. C. Vink and J. Horbach, J. Phys.: Condens. Matter 16, S3807 (2004). 28. R. L. C. Vink, J. Horbach, and K. Binder, Phy. Rev. E 71, 011401 (2005). 29. F. Lo Verso, R. L. C. Vink, D. Pini, and L. Reatto, Phy. Rev. E 73, 061407 (2006). 30. A. Fortin, E. Sanz, and M. Dijkstra, Phy. Rev. E 78, 041402 (2008). 31. T. W. Rosch and J. R. Errington, J. Chem. Phys. 129, 164907 (2008). 32. J. Zausch, P. Virnau, K. Binder, J. Horbach, and R. L. C. Vink,J. Chem. Phys. 130, 064906 (2009). 33. D. J. Ashton, N. B. Wilding, R. Roth, and R. Evans, Phys. Rev. E 84, 061136 (2011). 34. M. A. Annunziata and A. Pelissetto, Mol. Phys. 109, 2823 (2011). 35. D. J. Ashton and N. B. Wilding, J. Chem. Phys. 140, 244118 (2014). 36. L. Rovigatti, N. Gnan, A. Parola, and E. Zaccarelli, Soft Matter (2015). 37. M. López de Haro and C. F. Tejero, J. Chem. Phys. 121, 6918 (2004). 38. M. López de Haro, A. Malijevský, and S. Labík, Collect. Czech. Chem. Commun. 75, 359 (2010). 39. M. López de Haro, C. F. Tejero, and A. Santos, J. Chem. Phys. 138, 161104 (2013). 40. A. Y. Vlasov and A. J. Masters, Fluid Phase Equilib. 212, 183 (2003). 41. E. Z. Hamad, J. Chem. Phys. 105, 3222 (1996). 42. R. Blaak, Mol. Phys. 95, 695 (1998). 43. S. Labík and J. Kolafa, Phys. Rev. E 80, 051122 (2009); Erratum 84, 069901 (2011). 44. I. Urrutia, Phy. Rev. E 84, 062101 (2011). 45. F. Saija, G. Fiumara, and P. V. Giaquinta, Mol. Phys. 87, 991 (1996); Erratum 92, 1089 (1997). 46. F. Saija, G. Fiumara, and P. V. Giaquinta, J. Chem. Phys. 108, 9098 (1998). 47. M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 3 (1998). 48. A. Santos, M. López de Haro, and S. B. Yuste, J. Chem. Phys. 122, 024514 (2005). 49. A. Santos, M. López de Haro, and S. B. Yuste, J. Chem. Phys. 132, 204506 (2010). 50. Y. C. Kim and M. E. Fisher, J. Phys. Chem. B 108, 6750 (2004)
dspace.entity.typePublication
relation.isAuthorOfPublication45ce99f0-8f7e-41b5-ac11-1ae7ba368c80
relation.isAuthorOfPublication.latestForDiscovery45ce99f0-8f7e-41b5-ac11-1ae7ba368c80

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F-Tejero 43 LIBRE.pdf
Size:
431.22 KB
Format:
Adobe Portable Document Format

Collections