Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A complex version of the baer-krull theorems

dc.contributor.authorPuente Muñoz, María Jesús De La
dc.date.accessioned2023-06-20T16:48:20Z
dc.date.available2023-06-20T16:48:20Z
dc.date.issued2000
dc.description.abstractThe Baer-Krull theorems deal with the relationship between orderings of a valued field compatible with the valuation, and orderings of the residue class field. For these theorems it is necessary that the valuation ring should be convex with respect to the ordering. For a real field R, and an extension K _ R, the author defines SpecC(K/R) in terms of equivalence classes of embeddings of K over R into an algebraic closure C of K. This is done in such a way that when K is also real, the points of SpecC(K/R) correspond to the orderings of K over R. Given a point of SpecC(K/R), the author extends the definition of convexity to subsets of K (again this is the usual definition when K is real). Now let R be real, K be an extension of R, and B be a valuation ring in K. Let R be the residue class field of R\B. Suppose that R is a real subfield of K. The author studies relations between SpecC(K/R) and SpecC(K/R). In particular, it is shown that there is a lifting of each element of SpecC(K/R) to an element of SpecC(K/R), compatible with the valuation, and such that the lifting has the generalised convexity property. While a more elementary treatment of this result is possible if R = Q, for general R the proof involves model theory in a nontrivial way.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12795
dc.identifier.doi10.1080/00927870008827052
dc.identifier.issn0092-7872
dc.identifier.officialurlhttp://www.informaworld.com/smpp/title~content=t713597239
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57075
dc.issue.number8
dc.journal.titleCommunications in Algebra
dc.language.isoeng
dc.page.final3737
dc.page.initial3727
dc.publisherTaylor & Francis
dc.relation.projectIDPB 8910379-C02-02
dc.rights.accessRightsopen access
dc.subject.cdu512
dc.subject.keywordReal spectrum
dc.subject.keywordComplex spectrum
dc.subject.keywordInvolution
dc.subject.keywordResidually real
dc.subject.keywordValuation ring
dc.subject.keywordCanonical place
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleA complex version of the baer-krull theorems
dc.typejournal article
dc.volume.number28
dspace.entity.typePublication
relation.isAuthorOfPublication630e203d-3f7d-46d6-a43c-cb07da8c4b71
relation.isAuthorOfPublication.latestForDiscovery630e203d-3f7d-46d6-a43c-cb07da8c4b71

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2000complex.pdf
Size:
474.3 KB
Format:
Adobe Portable Document Format

Collections