Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the families of orthogonal polynomials associated to the Razavy potential

Loading...
Thumbnail Image

Full text at PDC

Publication date

1999

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing LTD
Citations
Google Scholar

Citation

Abstract

We show that there are two different families of (weakly) orthogonal polynomials associated to the quasi-exactly solvable Razavy potential V_ (x) = (ζ cosh 2x−M)^ 2 (ζ > 0, M ∈ N). One of these families encompasses the four sets of orthogonal polynomials recently found by Khare and Mandal, while the other one is new. These results are extended to the related periodic potential U_(x) = −(ζ cos 2x − M) ^2 , for which we also construct two different families of weakly orthogonal polynomials. We prove that either of these two families yields the ground state (when M is odd) and the lowest lying gaps in the energy spectrum of the latter periodic potential up to and including the (M − 1)_(th) gap and having the same parity as M − 1. Moreover, we show that the algebraic eigenfunctions obtained in this way are the well-known finite solutions of the Whittaker–Hill (or Hill’s three-term) periodic differential equation. Thus, the foregoing results provide a Lie-algebraic justification of the fact that the Whittaker– Hill equation (unlike, for instance, Mathieu’s equation) admits finite solutions.

Research Projects

Organizational Units

Journal Issue

Description

© 1999 IOP Publishing Ltd. Supported in part by DGES Grant PB95–0401.

Unesco subjects

Keywords

Collections