On the families of orthogonal polynomials associated to the Razavy potential
dc.contributor.author | Finkel Morgenstern, Federico | |
dc.contributor.author | González López, Artemio | |
dc.contributor.author | Rodríguez González, Miguel Ángel | |
dc.date.accessioned | 2023-06-20T20:09:55Z | |
dc.date.available | 2023-06-20T20:09:55Z | |
dc.date.issued | 1999-10-01 | |
dc.description | © 1999 IOP Publishing Ltd. Supported in part by DGES Grant PB95–0401. | |
dc.description.abstract | We show that there are two different families of (weakly) orthogonal polynomials associated to the quasi-exactly solvable Razavy potential V_ (x) = (ζ cosh 2x−M)^ 2 (ζ > 0, M ∈ N). One of these families encompasses the four sets of orthogonal polynomials recently found by Khare and Mandal, while the other one is new. These results are extended to the related periodic potential U_(x) = −(ζ cos 2x − M) ^2 , for which we also construct two different families of weakly orthogonal polynomials. We prove that either of these two families yields the ground state (when M is odd) and the lowest lying gaps in the energy spectrum of the latter periodic potential up to and including the (M − 1)_(th) gap and having the same parity as M − 1. Moreover, we show that the algebraic eigenfunctions obtained in this way are the well-known finite solutions of the Whittaker–Hill (or Hill’s three-term) periodic differential equation. Thus, the foregoing results provide a Lie-algebraic justification of the fact that the Whittaker– Hill equation (unlike, for instance, Mathieu’s equation) admits finite solutions. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGES | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/32858 | |
dc.identifier.doi | 10.1088/0305-4470/32/39/308 | |
dc.identifier.issn | 0305-4470 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0305-4470/32/39/308 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/math-ph/9905020 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59723 | |
dc.issue.number | 39 | |
dc.journal.title | Journal of physics A-Mathematical and General | |
dc.language.iso | eng | |
dc.page.final | 6835 | |
dc.page.initial | 6821 | |
dc.publisher | IOP Publishing LTD | |
dc.relation.projectID | PB95–0401 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Anti-isospectral transformations | |
dc.subject.keyword | Exactly-solvable problems | |
dc.subject.keyword | Quantum-mechanics | |
dc.subject.keyword | Sl(2) algebra | |
dc.subject.keyword | Systems | |
dc.subject.keyword | Operators | |
dc.subject.keyword | Equation | |
dc.subject.keyword | Kdp | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | On the families of orthogonal polynomials associated to the Razavy potential | |
dc.type | journal article | |
dc.volume.number | 32 | |
dcterms.references | [1] Razavy M 1980 Am. J. Phys. 48 285–8 [2] Lawrence M C and Robertson G N 1981 Ferroelectrics 34 179–86 [3] Robertson G N and Lawrence M C 1981 J. Phys. C: Solid State Phys. 14 4559–74 [4] Matsushita E and Matsubara T 1982 Prog. Theor. Phys. 67 1–19 [5] Duan X F and Scheiner S 1992 J. Mol. Struct. 270 173–85 [6] Ulyanov V V and Zaslavskii O B 1992 Phys. Rep. 216 179–251 [7] Turbiner A V and Ushveridze A G 1987 Phys. Lett. A126 181–3 [8] Turbiner A V 1988 Commun. Math. Phys. 118 467–74 [9] González-López A, Kamran N, and Olver P J 1993 Commun. Math. Phys. 153 117–46 [10] González-López A, Kamran N, and Olver P J 1994 Contemporary Mathematics 160 113–40 [11] Bender C M and Dunne G V 1996 J. Math. Phys. 37 6–11 [12] Finkel F, González-López A, and Rodríguez M A 1996 J. Math. Phys. 37 3954–72 [13] Krajewska A, Ushveridze A, and Walczak Z 1997 Mod. Phys. Lett. A12 1131–44 [14] Khare A and Mandal B P 1998 Phys. Lett. A239 197–200 [15] Khare A and Mandal B P 1998 J. Math. Phys. 39 3476–86 [16] Konwent H, Machnikowski P, Magnuszewski P, and Radosz A 1998 J. Phys. A: Math. Gen. 31 7541– 59 [17] Chihara T S 1978 An Introduction to Orthogonal Polynomials, (New York: Gordon and Breach) [18] Shifman M A 1989 Int. J. Mod. Phys. A4 2897– 952 [19] Kofman L, Linde A, and Starobinsky A A 1997 Phys. Rev D 56 3258–95 20] Krajewska A, Ushveridze A, and Walczak Z 1997 Mod. Phys. Lett. A12 1225–34 [21] Turbiner A V 1992 J. Phys. A: Math. Gen. 25 L1087–93 [22] Finkel F and Kamran N 1998 Adv. Appl. Math. 20 300–22 [23] Hochstadt H 1986 The Functions of Mathematical Physics (New York: Dover) [24] Reed M and Simon B 1978 Analysis of Operators (New York: Academic Press) [25] Ince E L 1956 Ordinary Differential Equations (New York: Dover) [26] Arscott F M 1964 Periodic Differential Equations (Oxford: Pergamon) [27] Magnus W and Winkler S 1979 Hill’s Equation (New York: Dover) [28] Alhassid Y, Gürsey F, and Iachello F 1983 Phys. Rev. Lett. 50 873–6 [29] Turbiner A V 1989 J. Phys. A: Math. Gen. 22 L1– 3 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 207092a4-0443-4336-a037-15936f8acc25 | |
relation.isAuthorOfPublication | 7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc | |
relation.isAuthorOfPublication | d781a665-7ef6-44e0-a0da-81f722f1b8ad | |
relation.isAuthorOfPublication.latestForDiscovery | 207092a4-0443-4336-a037-15936f8acc25 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- gonzalezlopez37preprint.pdf
- Size:
- 245.06 KB
- Format:
- Adobe Portable Document Format