Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the families of orthogonal polynomials associated to the Razavy potential

dc.contributor.authorFinkel Morgenstern, Federico
dc.contributor.authorGonzález López, Artemio
dc.contributor.authorRodríguez González, Miguel Ángel
dc.date.accessioned2023-06-20T20:09:55Z
dc.date.available2023-06-20T20:09:55Z
dc.date.issued1999-10-01
dc.description© 1999 IOP Publishing Ltd. Supported in part by DGES Grant PB95–0401.
dc.description.abstractWe show that there are two different families of (weakly) orthogonal polynomials associated to the quasi-exactly solvable Razavy potential V_ (x) = (ζ cosh 2x−M)^ 2 (ζ > 0, M ∈ N). One of these families encompasses the four sets of orthogonal polynomials recently found by Khare and Mandal, while the other one is new. These results are extended to the related periodic potential U_(x) = −(ζ cos 2x − M) ^2 , for which we also construct two different families of weakly orthogonal polynomials. We prove that either of these two families yields the ground state (when M is odd) and the lowest lying gaps in the energy spectrum of the latter periodic potential up to and including the (M − 1)_(th) gap and having the same parity as M − 1. Moreover, we show that the algebraic eigenfunctions obtained in this way are the well-known finite solutions of the Whittaker–Hill (or Hill’s three-term) periodic differential equation. Thus, the foregoing results provide a Lie-algebraic justification of the fact that the Whittaker– Hill equation (unlike, for instance, Mathieu’s equation) admits finite solutions.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32858
dc.identifier.doi10.1088/0305-4470/32/39/308
dc.identifier.issn0305-4470
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0305-4470/32/39/308
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/math-ph/9905020
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59723
dc.issue.number39
dc.journal.titleJournal of physics A-Mathematical and General
dc.language.isoeng
dc.page.final6835
dc.page.initial6821
dc.publisherIOP Publishing LTD
dc.relation.projectIDPB95–0401
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordAnti-isospectral transformations
dc.subject.keywordExactly-solvable problems
dc.subject.keywordQuantum-mechanics
dc.subject.keywordSl(2) algebra
dc.subject.keywordSystems
dc.subject.keywordOperators
dc.subject.keywordEquation
dc.subject.keywordKdp
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleOn the families of orthogonal polynomials associated to the Razavy potential
dc.typejournal article
dc.volume.number32
dcterms.references[1] Razavy M 1980 Am. J. Phys. 48 285–8 [2] Lawrence M C and Robertson G N 1981 Ferroelectrics 34 179–86 [3] Robertson G N and Lawrence M C 1981 J. Phys. C: Solid State Phys. 14 4559–74 [4] Matsushita E and Matsubara T 1982 Prog. Theor. Phys. 67 1–19 [5] Duan X F and Scheiner S 1992 J. Mol. Struct. 270 173–85 [6] Ulyanov V V and Zaslavskii O B 1992 Phys. Rep. 216 179–251 [7] Turbiner A V and Ushveridze A G 1987 Phys. Lett. A126 181–3 [8] Turbiner A V 1988 Commun. Math. Phys. 118 467–74 [9] González-López A, Kamran N, and Olver P J 1993 Commun. Math. Phys. 153 117–46 [10] González-López A, Kamran N, and Olver P J 1994 Contemporary Mathematics 160 113–40 [11] Bender C M and Dunne G V 1996 J. Math. Phys. 37 6–11 [12] Finkel F, González-López A, and Rodríguez M A 1996 J. Math. Phys. 37 3954–72 [13] Krajewska A, Ushveridze A, and Walczak Z 1997 Mod. Phys. Lett. A12 1131–44 [14] Khare A and Mandal B P 1998 Phys. Lett. A239 197–200 [15] Khare A and Mandal B P 1998 J. Math. Phys. 39 3476–86 [16] Konwent H, Machnikowski P, Magnuszewski P, and Radosz A 1998 J. Phys. A: Math. Gen. 31 7541– 59 [17] Chihara T S 1978 An Introduction to Orthogonal Polynomials, (New York: Gordon and Breach) [18] Shifman M A 1989 Int. J. Mod. Phys. A4 2897– 952 [19] Kofman L, Linde A, and Starobinsky A A 1997 Phys. Rev D 56 3258–95 20] Krajewska A, Ushveridze A, and Walczak Z 1997 Mod. Phys. Lett. A12 1225–34 [21] Turbiner A V 1992 J. Phys. A: Math. Gen. 25 L1087–93 [22] Finkel F and Kamran N 1998 Adv. Appl. Math. 20 300–22 [23] Hochstadt H 1986 The Functions of Mathematical Physics (New York: Dover) [24] Reed M and Simon B 1978 Analysis of Operators (New York: Academic Press) [25] Ince E L 1956 Ordinary Differential Equations (New York: Dover) [26] Arscott F M 1964 Periodic Differential Equations (Oxford: Pergamon) [27] Magnus W and Winkler S 1979 Hill’s Equation (New York: Dover) [28] Alhassid Y, Gürsey F, and Iachello F 1983 Phys. Rev. Lett. 50 873–6 [29] Turbiner A V 1989 J. Phys. A: Math. Gen. 22 L1– 3
dspace.entity.typePublication
relation.isAuthorOfPublication207092a4-0443-4336-a037-15936f8acc25
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublicationd781a665-7ef6-44e0-a0da-81f722f1b8ad
relation.isAuthorOfPublication.latestForDiscovery207092a4-0443-4336-a037-15936f8acc25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezlopez37preprint.pdf
Size:
245.06 KB
Format:
Adobe Portable Document Format

Collections