Automorphism groups of Cayley evolution algebras

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this paper we introduce a new species of evolution algebras that we call Cayley evolution algebras. We show that if a field k contains sufficiently many elements (for example if k is infinite) then every finite group G is isomorphic to Aut(X) where X is a finite-dimensional absolutely simple Cayley evolution k-algebra.
CRUE-CSIC (Acuerdos Transformativos 2023)
UCM subjects
Unesco subjects
1. Ahmed, H., Bekbaev, U., Rakhimov, I.: On classification of 2-dimensional evolution algebras and its applications. In: 5th International Conference on Mathematical Applications in Engineering 30–31 October 2019, Putrajaya, Malaysia, vol. 1489, pp. 012001. IOP Publishing Ltd (2020) 2. Alarafeen, A., Qaralleh, I., Ahmad, A.: Properties of nilpotent evolution algebras with no maximal nilindex. Eur. J. Pure Appl. Math. 14(1), 278–300 (2021) 3. Cabrera C.Y.: Evolution algebras. Ph.D. thesis, University of Málaga, Spain (2016) 4. Cabrera, C.Y., Siles, M.M., Velasco, M.V.: Evolution algebras of arbitrary dimension and their decompositions. Linear Algebra Appl. 495, 122–162 (2016) 5. Costoya, C., Ligouras, P., Tocino, A., Viruel, A.: Regular evolution algebras are universally finite. Proc. Am. Math. Soc. 150(3), 919–925 (2022) 6. Costoya, C., Méndez, D., Viruel, A.: Realisability problem in arrow categories. Collect. Math. 71, 383–405 (2020) 7. Elduque, A., Labra, A.: Evolution algebras and graphs. J. Algebra Appl. 14(7), 1550103 (2015) 8. Elduque, A., Labra, A.: Evolution algebras, automorphisms, and graphs. Linear Multilinear Algebra 69(2), 1–12 (2019) 9. Gordeev, N.L., Popov, V.L.: Automorphism groups of finite dimensional simple algebras. Ann. Math. 158, 1041–1065 (2003) 10. Harary, F.: The determinant of the adjacency matrix of a graph. Siam Rev. 4(3), 202–210 (1962) 11. Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154(1), 115–138 (2001) 12. Mukhamedov, F., Khakimov, O., Omirov, B., Qaralleh, I.: Derivations and automorphisms of nilpotent evolution algebras with maximal nilindex. J. Algebra Appl. 18(12), 1950233 (2019) 13. Popov, V.L.: An analogue of M. Artin’s conjecture on invariants for non-associative algebras. Am. Math. Soc. Transl. 169, 121–143 (1995) 14. Sandling, R.: The isomorphism problem for group rings: A survey. In: Reiner, I., Roggenkamp, K.W. (eds.) Orders and Their Applications, pp. 256–288. Springer, Berlin (1985) 15. Sriwongsa, S., Zou, Y.M.: On automorphism groups of idempotent evolution algebras. Linear Algebra Appl. 641, 143–155 (2022) 16. Tian, J.P.: Evolution Algebras and Their Applications. Lecture Notes in Mathematics, vol. 1921. Springer, Berlin (2008) 17. White, A.T.: Graphs, Groups and Surfaces, Volume 8 of North-Holland Mathematics Studies, 2nd edn. North-Holland Publishing Co., Amsterdam (1984)