Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Automorphism groups of Cayley evolution algebras

dc.contributor.authorCostoya, Cristina
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorTocino Sánchez, Alicia
dc.contributor.authorViruel, Antonio
dc.date.accessioned2023-06-22T12:42:26Z
dc.date.available2023-06-22T12:42:26Z
dc.date.issued2023-03-08
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2023)
dc.description.abstractIn this paper we introduce a new species of evolution algebras that we call Cayley evolution algebras. We show that if a field k contains sufficiently many elements (for example if k is infinite) then every finite group G is isomorphic to Aut(X) where X is a finite-dimensional absolutely simple Cayley evolution k-algebra.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICIN)
dc.description.sponsorshipJunta de Andalucía
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76965
dc.identifier.doi10.1007/s13398-023-01414-w
dc.identifier.issn1578-7303
dc.identifier.officialurlhttps://doi.org/10.1007/s13398-023-01414-w
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s13398-023-01414-w
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73075
dc.issue.number82
dc.journal.titleRev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat.
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDPID2020-115155GB-I00; TED2021-131201B-I00; PID2020-118452GB-I00; PID2019-104236GB-I00; PID2020–118753GB-I00
dc.relation.projectIDUMA18-FEDERJA-119; FQM-336; PROYEXCEL-00827; FQM-213
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu512.554
dc.subject.cdu512.54
dc.subject.keywordEvolution algebra
dc.subject.keywordFinite group
dc.subject.keywordAutomorphism group
dc.subject.keywordGraph
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleAutomorphism groups of Cayley evolution algebras
dc.typejournal article
dc.volume.number117
dcterms.references1. Ahmed, H., Bekbaev, U., Rakhimov, I.: On classification of 2-dimensional evolution algebras and its applications. In: 5th International Conference on Mathematical Applications in Engineering 30–31 October 2019, Putrajaya, Malaysia, vol. 1489, pp. 012001. IOP Publishing Ltd (2020) 2. Alarafeen, A., Qaralleh, I., Ahmad, A.: Properties of nilpotent evolution algebras with no maximal nilindex. Eur. J. Pure Appl. Math. 14(1), 278–300 (2021) 3. Cabrera C.Y.: Evolution algebras. Ph.D. thesis, University of Málaga, Spain (2016) 4. Cabrera, C.Y., Siles, M.M., Velasco, M.V.: Evolution algebras of arbitrary dimension and their decompositions. Linear Algebra Appl. 495, 122–162 (2016) 5. Costoya, C., Ligouras, P., Tocino, A., Viruel, A.: Regular evolution algebras are universally finite. Proc. Am. Math. Soc. 150(3), 919–925 (2022) 6. Costoya, C., Méndez, D., Viruel, A.: Realisability problem in arrow categories. Collect. Math. 71, 383–405 (2020) 7. Elduque, A., Labra, A.: Evolution algebras and graphs. J. Algebra Appl. 14(7), 1550103 (2015) 8. Elduque, A., Labra, A.: Evolution algebras, automorphisms, and graphs. Linear Multilinear Algebra 69(2), 1–12 (2019) 9. Gordeev, N.L., Popov, V.L.: Automorphism groups of finite dimensional simple algebras. Ann. Math. 158, 1041–1065 (2003) 10. Harary, F.: The determinant of the adjacency matrix of a graph. Siam Rev. 4(3), 202–210 (1962) 11. Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154(1), 115–138 (2001) 12. Mukhamedov, F., Khakimov, O., Omirov, B., Qaralleh, I.: Derivations and automorphisms of nilpotent evolution algebras with maximal nilindex. J. Algebra Appl. 18(12), 1950233 (2019) 13. Popov, V.L.: An analogue of M. Artin’s conjecture on invariants for non-associative algebras. Am. Math. Soc. Transl. 169, 121–143 (1995) 14. Sandling, R.: The isomorphism problem for group rings: A survey. In: Reiner, I., Roggenkamp, K.W. (eds.) Orders and Their Applications, pp. 256–288. Springer, Berlin (1985) 15. Sriwongsa, S., Zou, Y.M.: On automorphism groups of idempotent evolution algebras. Linear Algebra Appl. 641, 143–155 (2022) 16. Tian, J.P.: Evolution Algebras and Their Applications. Lecture Notes in Mathematics, vol. 1921. Springer, Berlin (2008) 17. White, A.T.: Graphs, Groups and Surfaces, Volume 8 of North-Holland Mathematics Studies, 2nd edn. North-Holland Publishing Co., Amsterdam (1984)
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s13398-023-01414-w.pdf
Size:
245.7 KB
Format:
Adobe Portable Document Format

Collections