Automorphism groups of Cayley evolution algebras
dc.contributor.author | Costoya, Cristina | |
dc.contributor.author | Muñoz, Vicente | |
dc.contributor.author | Tocino Sánchez, Alicia | |
dc.contributor.author | Viruel, Antonio | |
dc.date.accessioned | 2023-06-22T12:42:26Z | |
dc.date.available | 2023-06-22T12:42:26Z | |
dc.date.issued | 2023-03-08 | |
dc.description | CRUE-CSIC (Acuerdos Transformativos 2023) | |
dc.description.abstract | In this paper we introduce a new species of evolution algebras that we call Cayley evolution algebras. We show that if a field k contains sufficiently many elements (for example if k is infinite) then every finite group G is isomorphic to Aut(X) where X is a finite-dimensional absolutely simple Cayley evolution k-algebra. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICIN) | |
dc.description.sponsorship | Junta de Andalucía | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/76965 | |
dc.identifier.doi | 10.1007/s13398-023-01414-w | |
dc.identifier.issn | 1578-7303 | |
dc.identifier.officialurl | https://doi.org/10.1007/s13398-023-01414-w | |
dc.identifier.relatedurl | https://link.springer.com/article/10.1007/s13398-023-01414-w | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/73075 | |
dc.issue.number | 82 | |
dc.journal.title | Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.projectID | PID2020-115155GB-I00; TED2021-131201B-I00; PID2020-118452GB-I00; PID2019-104236GB-I00; PID2020–118753GB-I00 | |
dc.relation.projectID | UMA18-FEDERJA-119; FQM-336; PROYEXCEL-00827; FQM-213 | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 512.554 | |
dc.subject.cdu | 512.54 | |
dc.subject.keyword | Evolution algebra | |
dc.subject.keyword | Finite group | |
dc.subject.keyword | Automorphism group | |
dc.subject.keyword | Graph | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Automorphism groups of Cayley evolution algebras | |
dc.type | journal article | |
dc.volume.number | 117 | |
dcterms.references | 1. Ahmed, H., Bekbaev, U., Rakhimov, I.: On classification of 2-dimensional evolution algebras and its applications. In: 5th International Conference on Mathematical Applications in Engineering 30–31 October 2019, Putrajaya, Malaysia, vol. 1489, pp. 012001. IOP Publishing Ltd (2020) 2. Alarafeen, A., Qaralleh, I., Ahmad, A.: Properties of nilpotent evolution algebras with no maximal nilindex. Eur. J. Pure Appl. Math. 14(1), 278–300 (2021) 3. Cabrera C.Y.: Evolution algebras. Ph.D. thesis, University of Málaga, Spain (2016) 4. Cabrera, C.Y., Siles, M.M., Velasco, M.V.: Evolution algebras of arbitrary dimension and their decompositions. Linear Algebra Appl. 495, 122–162 (2016) 5. Costoya, C., Ligouras, P., Tocino, A., Viruel, A.: Regular evolution algebras are universally finite. Proc. Am. Math. Soc. 150(3), 919–925 (2022) 6. Costoya, C., Méndez, D., Viruel, A.: Realisability problem in arrow categories. Collect. Math. 71, 383–405 (2020) 7. Elduque, A., Labra, A.: Evolution algebras and graphs. J. Algebra Appl. 14(7), 1550103 (2015) 8. Elduque, A., Labra, A.: Evolution algebras, automorphisms, and graphs. Linear Multilinear Algebra 69(2), 1–12 (2019) 9. Gordeev, N.L., Popov, V.L.: Automorphism groups of finite dimensional simple algebras. Ann. Math. 158, 1041–1065 (2003) 10. Harary, F.: The determinant of the adjacency matrix of a graph. Siam Rev. 4(3), 202–210 (1962) 11. Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154(1), 115–138 (2001) 12. Mukhamedov, F., Khakimov, O., Omirov, B., Qaralleh, I.: Derivations and automorphisms of nilpotent evolution algebras with maximal nilindex. J. Algebra Appl. 18(12), 1950233 (2019) 13. Popov, V.L.: An analogue of M. Artin’s conjecture on invariants for non-associative algebras. Am. Math. Soc. Transl. 169, 121–143 (1995) 14. Sandling, R.: The isomorphism problem for group rings: A survey. In: Reiner, I., Roggenkamp, K.W. (eds.) Orders and Their Applications, pp. 256–288. Springer, Berlin (1985) 15. Sriwongsa, S., Zou, Y.M.: On automorphism groups of idempotent evolution algebras. Linear Algebra Appl. 641, 143–155 (2022) 16. Tian, J.P.: Evolution Algebras and Their Applications. Lecture Notes in Mathematics, vol. 1921. Springer, Berlin (2008) 17. White, A.T.: Graphs, Groups and Surfaces, Volume 8 of North-Holland Mathematics Studies, 2nd edn. North-Holland Publishing Co., Amsterdam (1984) | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1