k-Balanced games and capacities
Loading...
Download
Full text at PDC
Publication date
2010
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science
Citation
Abstract
In this paper, we present a generalization of the concept of balanced game for finite games. Balanced games are those having a nonempty core, and this core is usually considered as the solution of the game. Based on the concept of k-additivity, we define the so-called k-balanced games and the corresponding generalization of core, the k-additive core, whose elements are not directly imputations but k-additive games. We show that any game is k-balanced for a suitable choice of k, so that the corresponding k-additive core is not empty. For the games in the k-additive core, we propose a sharing procedure to get an imputation and a representative value for the expectations of the players based on the pessimistic criterion. Moreover, we look for necessary and sufficient conditions for a game to be k-balanced. For the general case, it is shown that any game is either balanced or 2-balanced. Finally, we treat the special case of capacities.