Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

k-Balanced games and capacities

dc.contributor.authorMiranda Menéndez, Pedro
dc.contributor.authorGrabisch, Michel
dc.date.accessioned2023-06-20T00:18:32Z
dc.date.available2023-06-20T00:18:32Z
dc.date.issued2010
dc.description.abstractIn this paper, we present a generalization of the concept of balanced game for finite games. Balanced games are those having a nonempty core, and this core is usually considered as the solution of the game. Based on the concept of k-additivity, we define the so-called k-balanced games and the corresponding generalization of core, the k-additive core, whose elements are not directly imputations but k-additive games. We show that any game is k-balanced for a suitable choice of k, so that the corresponding k-additive core is not empty. For the games in the k-additive core, we propose a sharing procedure to get an imputation and a representative value for the expectations of the players based on the pessimistic criterion. Moreover, we look for necessary and sufficient conditions for a game to be k-balanced. For the general case, it is shown that any game is either balanced or 2-balanced. Finally, we treat the special case of capacities.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16939
dc.identifier.doi10.1016/j.ejor.2008.12.020
dc.identifier.issn0377-2217
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S037722170801062X
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42370
dc.issue.number2
dc.journal.titleEuropean journal of operational research
dc.language.isoeng
dc.page.final472
dc.page.initial465
dc.publisherElsevier Science
dc.relation.projectIDMTM2007-61193
dc.relation.projectIDCAM-UCM910707
dc.rights.accessRightsrestricted access
dc.subject.cdu519.83
dc.subject.keywordCooperative games
dc.subject.keywordk-Additivity
dc.subject.keywordBalanced games
dc.subject.keywordCapacities
dc.subject.keywordCore
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titlek-Balanced games and capacities
dc.typejournal article
dc.volume.number200
dcterms.referencesO. Bondareva, Some applications of linear programming to the theory of cooperative games, Problemy Kibernet (10)(1963) 119–139. A. Chateauneuf, J.-Y. Jaffray, Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion, Mathematical Social Sciences (17) (1989) 263–283. G. Choquet, Theory of capacities, Annales de l’Institut Fourier (5) (1953) 131–295. A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping, The Annals of Mathematical Statististics (38) (1967) 325–339. D. Denneberg, Non-Additive Measures and Integral, Kluwer Academic, 1994. T. Driessen, Cooperative Games, Kluwer Academic, 1988. P. Dubreil, Algèbre, Equivalences, Opérations, Groupes, Anneaux, Corps, vol. 1, Gauthiers-Villars, 1946 (in French). M. Grabisch, k-Order additive discrete fuzzy measures, in: Proceedings of Sixth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Granada, Spain, 1996, pp. 1345–1350. M. Grabisch, Alternative representations of discrete fuzzy measures for decision making, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997) 587–607. M. Grabisch, k-Order additive discrete fuzzy measures and their representation, Fuzzy Sets and Systems (92) (1997) 167–189. M. Grabisch, P. Miranda, On the vertices of the k-additive core, Discrete Mathematics (308) (2008) 5204–5217. J.C. Harsanyi, A simplified bargaining model for the n-person cooperative game, International Economic Review 4 (1963) 194–220. G. Owen, Game Theory, Academic Press, 1995. G.C. Rota, On the foundations of combinatorial theory. I: Theory of Möbius functions, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete (2) (1964) 340–368. G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ, USA, 1976. L.S. Shapley, A value for n-person games, in: H.W. Kuhn, A.W. Tucker (Eds.),Contributions to the Theory of Games, Annals of Mathematics Studies, vol. 2,Princeton University Press, 1953, pp. 307–317. L.S. Shapley, Cores of convex games, International Journal of Game Theory 1 (1971) 11–26. M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology, 1974. P. Walley, Coherent lower (and upper) probabilities, Technical Report 22,University of Warwick, Coventry, UK, 1981.
dspace.entity.typePublication
relation.isAuthorOfPublicationd940fcaa-13c3-4bad-8198-1025a668ed71
relation.isAuthorOfPublication.latestForDiscoveryd940fcaa-13c3-4bad-8198-1025a668ed71

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Miranda06.pdf
Size:
249.1 KB
Format:
Adobe Portable Document Format

Collections