Unimodular gravity redux

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
It is well known that the problem of the cosmological constant appears in a new light in unimodular gravity. In particular, the zero-momentum piece of the potential does not automatically produce a corresponding cosmological constant. Here we show that quantum corrections do not renormalize the classical value of this observable.
© 2015 American Physical Society. We acknowledge useful discussions with A. O. Barvinsky and C. F. Steinwachs. This work has been partially supported by the European Union FP7 ITN INVISIBLES (Marie Curie Actions, PITN- GA-2011-289442, and HPRN-CT-200-00148) as well as by FPA2012-31880 (MICINN, Spain), FPA2011-24568 (MICINN, Spain), S2009ESP-1473 (CA Madrid), and COST Action MP1210 (The String Theory Universe). The authors acknowledge the support of the Spanish MINECO Centro de Excelencia Severo Ochoa Program under Grant No. SEV-2012-0249.
Unesco subjects
[1] J. J. van der Bij, H. van Dam, and Y. J. Ng, The exchange of massless spin two particles, Physica A (Amsterdam) 116A, 307 (1982). [2] E. Álvarez, D. Blas, J. Garriga, and E. Verdaguer, Transverse Fierz-Pauli symmetry, Nucl. Phys. B756, 148 (2006); E. Álvarez and M. Herrero-Valea, Unimodular gravity with external sources, J. Cosmol. Astropart. Phys. 01 (2013) 014. [3] A. Einstein, Do gravitational fields play an essential part in the structure of the elementary particles of matter?, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1919, 433 (1919). [4] G. F. R. Ellis, The trace-free Einstein equations and inflation, Gen. Relativ. Gravit. 46, 1619 (2014). [5] R. Carballo-Rubio, Longitudinal diffeomorphisms obstruct the protection of vacuum energy, Phys. Rev. D 91, 124071 (2015). [6] E. Álvarez, S. González-Martín, M-Herrero-Valea, and C. P. Martín, Quantum corrections to unimodular gravity, J. High Energy Phys. 08 (2015) 078; E. Álvarez, M. Herrero-Valea, and C. P. Martin, Conformal and non-conformal dilaton gravity, J. High Energy Phys. 10 (2014) 115. [7] A. O. Barvinsky and G. A. Vilkovisky, The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity, Phys. Rep. 119, 1 (1985). [8] S. M. Christensen and M. J. Duff, Quantizing gravity with a cosmological constant, Nucl. Phys. B170, 480 (1980). [9] M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57, 971 (1998). [10] D. J. Toms, Quadratic divergences and quantum gravitational contributions to gauge coupling constants, Phys. Rev. D 84, 084016 (2011); The background-field method and the renormalization of non-Abelian gauge theories in curved space-time, Phys. Rev. D 27, 1803 (1983). [11] M. M. Anber and J. F. Donoghue, On the running of the gravitational constant, Phys. Rev. D 85, 104016 (2012); Running couplings and operator mixing in the gravitational corrections to coupling constants, Phys. Rev. D 83, 124003 (2011).