Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Unimodular gravity redux

dc.contributor.authorÁlvarez, Enrique
dc.contributor.authorGonzález Martín, Sergio
dc.contributor.authorHerrero Valea, Mario
dc.contributor.authorPérez Martín, Carmelo
dc.date.accessioned2023-06-18T06:48:03Z
dc.date.available2023-06-18T06:48:03Z
dc.date.issued2015-09-15
dc.description© 2015 American Physical Society. We acknowledge useful discussions with A. O. Barvinsky and C. F. Steinwachs. This work has been partially supported by the European Union FP7 ITN INVISIBLES (Marie Curie Actions, PITN- GA-2011-289442, and HPRN-CT-200-00148) as well as by FPA2012-31880 (MICINN, Spain), FPA2011-24568 (MICINN, Spain), S2009ESP-1473 (CA Madrid), and COST Action MP1210 (The String Theory Universe). The authors acknowledge the support of the Spanish MINECO Centro de Excelencia Severo Ochoa Program under Grant No. SEV-2012-0249.
dc.description.abstractIt is well known that the problem of the cosmological constant appears in a new light in unimodular gravity. In particular, the zero-momentum piece of the potential does not automatically produce a corresponding cosmological constant. Here we show that quantum corrections do not renormalize the classical value of this observable.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN), España
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipEuropean Cooperation in Science and Technology (COST) Action
dc.description.sponsorshipPrograma Centro de Excelencia Severo Ochoa (MINECO)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MIECO)
dc.description.sponsorshipEU Framework Programme Horizon 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33857
dc.identifier.doi10.1103/PhysRevD.92.061502
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.92.061502
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24229
dc.issue.number6
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDITN INVISIBLES (PITN- GA-2011-289442)
dc.relation.projectIDHPRN-CT-200-00148
dc.relation.projectIDHEPHACOS (S2009/ESP-1473)
dc.relation.projectIDFPA2012-31880
dc.relation.projectIDFPA2011-24568
dc.relation.projectIDMP1210
dc.relation.projectIDSEV-2012-0249
dc.relation.projectIDITN INVISIBLES
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordQuantum-gravity
dc.subject.keywordGauge-theories
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleUnimodular gravity redux
dc.typejournal article
dc.volume.number92
dcterms.references[1] J. J. van der Bij, H. van Dam, and Y. J. Ng, The exchange of massless spin two particles, Physica A (Amsterdam) 116A, 307 (1982). [2] E. Álvarez, D. Blas, J. Garriga, and E. Verdaguer, Transverse Fierz-Pauli symmetry, Nucl. Phys. B756, 148 (2006); E. Álvarez and M. Herrero-Valea, Unimodular gravity with external sources, J. Cosmol. Astropart. Phys. 01 (2013) 014. [3] A. Einstein, Do gravitational fields play an essential part in the structure of the elementary particles of matter?, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1919, 433 (1919). [4] G. F. R. Ellis, The trace-free Einstein equations and inflation, Gen. Relativ. Gravit. 46, 1619 (2014). [5] R. Carballo-Rubio, Longitudinal diffeomorphisms obstruct the protection of vacuum energy, Phys. Rev. D 91, 124071 (2015). [6] E. Álvarez, S. González-Martín, M-Herrero-Valea, and C. P. Martín, Quantum corrections to unimodular gravity, J. High Energy Phys. 08 (2015) 078; E. Álvarez, M. Herrero-Valea, and C. P. Martin, Conformal and non-conformal dilaton gravity, J. High Energy Phys. 10 (2014) 115. [7] A. O. Barvinsky and G. A. Vilkovisky, The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity, Phys. Rep. 119, 1 (1985). [8] S. M. Christensen and M. J. Duff, Quantizing gravity with a cosmological constant, Nucl. Phys. B170, 480 (1980). [9] M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57, 971 (1998). [10] D. J. Toms, Quadratic divergences and quantum gravitational contributions to gauge coupling constants, Phys. Rev. D 84, 084016 (2011); The background-field method and the renormalization of non-Abelian gauge theories in curved space-time, Phys. Rev. D 27, 1803 (1983). [11] M. M. Anber and J. F. Donoghue, On the running of the gravitational constant, Phys. Rev. D 85, 104016 (2012); Running couplings and operator mixing in the gravitational corrections to coupling constants, Phys. Rev. D 83, 124003 (2011).
dspace.entity.typePublication
relation.isAuthorOfPublicationbf7276d2-1dee-4422-a116-e02a2b8b0ba3
relation.isAuthorOfPublication.latestForDiscoverybf7276d2-1dee-4422-a116-e02a2b8b0ba3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PérezMartínCarmelo 43 LIBRE.pdf
Size:
89.14 KB
Format:
Adobe Portable Document Format

Collections