Symmetries of discrete dynamical systems involving two species
dc.contributor.author | Gómez-Ullate Otaiza, David | |
dc.contributor.author | Lafortune, S. | |
dc.contributor.author | Winternitz, P. | |
dc.date.accessioned | 2023-06-20T20:07:53Z | |
dc.date.available | 2023-06-20T20:07:53Z | |
dc.date.issued | 1999-06 | |
dc.description | ©1999 American Institute of Physics. The authors thank D. Levi and M. A. Rodriguez for helpful discussions. The research of S.L. and P.W. was partly supported by the NSERC of Canadá and FCAR du Québec. S. L. would like to thank the Departamento de Física Teórica II de la Universidad Complutense for their hospitality during his stay in Madrid. D.G.U.’s work was partly supported by DGES Grant No. PB95-0401. He would like to express his gratitude to the Centre de Recherches Mathématiques for their kind hospitality | |
dc.description.abstract | The Lie point symmetries of a coupled system of two nonlinear differential-difference equations are investigated. It is shown that in special cases the symmetry group can be infinite dimensional, in other cases up to ten dimensional. The equations can describe the interaction of two long molecular chains, each involving one type of atoms. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | NSERC of Canadá | |
dc.description.sponsorship | FCAR du Québec | |
dc.description.sponsorship | DGES | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31105 | |
dc.identifier.doi | 10.1063/1.532728 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.532728 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59633 | |
dc.issue.number | 6 | |
dc.journal.title | Journal of mathematical physics | |
dc.language.iso | eng | |
dc.page.final | 2804 | |
dc.page.initial | 2782 | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | PB95-0401 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Differential-difference-equations | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Symmetries of discrete dynamical systems involving two species | |
dc.type | journal article | |
dc.volume.number | 40 | |
dcterms.references | 1. A. Campa, A. Giansanti, A. Tenenbaum, D. Levi, and O. Ragnisco, Phys. Rev. B 48, 10 168 (1993). 2. A. C. Scott, Phys. Rep. 217, 1 (1992). 3. S. Pneumaticos, N. Flytzanis, and M. Remoissenent, Phys. Rev. B 33, 2308 (1986). 4. D. Levi and P. Winternitz, J. Math. Phys. 37, 5551 (1996). 5. D. Levi and P. Winternitz, Phys. Lett. A 152, 335 (199)!. 6. D. Levi and P. Winternitz, J. Math. Phys. 34, 3713 (1993). 7D. Levi, L. Vinet, and P. Winternitz, J. Phys. A 30, 633 (1997). 8. S. Maeda, Math. Japonica 25, 405 (1980); 26, 85 (1981). 9. R. Quispel, H. W. Capel, and R. Sahadevan, Phys. Lett. A 170, 379 (1992). 10. V. A. Dorodnitsyn, J. Sov. Math. 55, 1490 (1991). 11. V. A. Dorodnitsyn, in Symmetries and Integrability of Difference Equations, edited by D. Levi, L. Vinet, and P. Winternitz (AMS, Providence, RI, 1995). 12. R. Floreanini, J. Negro, L. M. Nieto, and L. Vinet, Lett. Math. Phys. 36, 351 (1996). 13. R. Floreanini and L. Vinet, J. Math. Phys. 36, 7024 (1995). 14. J. P. Gazeau and P. Winternitz, Phys. Lett. A 167, 246 (1992); J. Math. Phys. 33, 4087 (1992). 15. N. Jacobson, Lie Algebras (Dover, New York, 1979). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1