Nonlinear Michelson interferometer for improved quantum metrology

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the energy resources.
©2015 American Physical Society. We acknowledge financial support from Spanish Ministerio de Economia y Competitividad Projects No. FIS2012-33152 and No. FIS2012-35583 and from the Comunidad Autonoma de Madrid research consortium QUITEMAD+ Grant No. S2013/ICE-2801.
Unesco subjects
[1] V. Giovannetti, S. Lloyd, and L.Maccone, Nat. Photonics 5, 222 (2011). [2] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997). [3] R. Demkowicz-Dobrzański, K. Banaszek, and R. Schnabel, Phys. Rev. A 88, 041802(R) (2013). [4] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, Prog. Opt. 60, 345 (2015). [5] A. Luis, Phys. Lett. A 329, 8 (2004). [6] S. Boixo, S. T. Flammia, C. M. Caves, and J.M. Geremia, Phys. Rev. Lett. 98, 090401 (2007). [7] S. Boixo, A. Datta, M. J. Davis, A. Shaji, A. B. Tacla, and C. M. Caves, Phys. Rev. A 80, 032103 (2009). [8] M. Napolitano and M. W. Mitchell, New J. Phys. 12, 093016 (2010). [9] A. B. Tacla, S. Boixo, A. Datta, A. Shaji, and C.M. Caves, Phys. Rev. A 82, 053636 (2010). [10] A. Rivas and A. Luis, Phys. Rev. Lett. 105, 010403 (2010). [11] A. Luis, SPIE Rev. 1, 018006 (2010). [12] M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R. J. Sewell, and M. W. Mitchell, Nature (London) 471, 486 (2011). [13] R. J. Sewell, M. Napolitano, N. Behbood, G. Colangelo, F. Martin Ciurana, and M. W. Mitchell, Phys. Rev. X 4, 021045 (2014). [14] A. F. Pace, M. J. Collett, and D. F.Walls, Phys. Rev. A 47, 3173 (1993). [15] H. Rehbein, J. Harms, R. Schnabel, and K. Danzmann, Phys. Rev. Lett. 95, 193001 (2005). [16] A. Khalaidovski,A. Thüring, H. Rehbein,N. Lastzka, B.Willke, K. Danzmann, and R. Schnabel, Phys. Rev. A 80, 053801 (2009). [17] R. X. Adhikari, Rev. Mod. Phys. 86, 121 (2014). [18] B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986). [19] Á . Börzsoönyi, Z. Heiner, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, Opt. Express 18, 25847 (2010). [20] L. Spani Molella, R.-H. Rinkleff, G. K¨un, and K. Danzmann, Appl. Phys. B 90, 273 (2008). [21] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, Science 320, 769 (2008). [22] N. A. Robertson, Classical Quantum Gravity 17, R19 (2000). [23] E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, Nat. Photonics 9, 228 (2015). [24] X. Jin, M. Lebrat, L. Zhang, K. Lee, T. Bartley, M. Barbieri, J. Nunn, A. Datta, and I. A. Walmsley, CLEO: QELS Fundamental Science 2013, San Jose, CA, OSA Technical Digest (online) (OSA, Washington, D.C., 2013), paper QF2B.2.