Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quasi-exactly solvable Lie superalgebras of differential operators

Loading...
Thumbnail Image

Full text at PDC

Publication date

1997

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing LTD
Citations
Google Scholar

Citation

Abstract

In this paper, we study Lie superalgebras of 2 x 2 matrix-valued first-order differential operators on the complex line. We first completely classify all such superalgebras of finite dimension. Among the finite-dimensional superalgebras whose odd subspace is non-trivial, we find those admitting a finite-dimensional invariant module of smooth vector-valued functions, and classify all the resulting finite-dimensional modules. The latter Lie superalgebras and their modules are the building blocks in the construction of quasi-exactly solvable quantum mechanical models for spin-1/2 particles in one dimension.

Research Projects

Organizational Units

Journal Issue

Description

©1997 IOP Publishing Ltd. This work was supported in part by DGICYT grant PB95-0401.

Unesco subjects

Keywords

Collections