Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quasi-exactly solvable Lie superalgebras of differential operators

dc.contributor.authorFinkel Morgenstern, Federico
dc.contributor.authorGonzález López, Artemio
dc.contributor.authorRodríguez González, Miguel Ángel
dc.date.accessioned2023-06-20T20:09:46Z
dc.date.available2023-06-20T20:09:46Z
dc.date.issued1997-10-07
dc.description©1997 IOP Publishing Ltd. This work was supported in part by DGICYT grant PB95-0401.
dc.description.abstractIn this paper, we study Lie superalgebras of 2 x 2 matrix-valued first-order differential operators on the complex line. We first completely classify all such superalgebras of finite dimension. Among the finite-dimensional superalgebras whose odd subspace is non-trivial, we find those admitting a finite-dimensional invariant module of smooth vector-valued functions, and classify all the resulting finite-dimensional modules. The latter Lie superalgebras and their modules are the building blocks in the construction of quasi-exactly solvable quantum mechanical models for spin-1/2 particles in one dimension.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32710
dc.identifier.doi10.1088/0305-4470/30/19/024
dc.identifier.issn0305-4470
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0305-4470/30/19/024
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/pdf/physics/9702015v1.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59716
dc.issue.number19
dc.journal.titleJournal of physics A-Mathematical and general
dc.language.isoeng
dc.page.final6892
dc.page.initial6879
dc.publisherIOP Publishing LTD
dc.relation.projectIDPB95-0401
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleQuasi-exactly solvable Lie superalgebras of differential operators
dc.typejournal article
dc.volume.number303
dcterms.references[1] Brihaye Y and Kosinski P 1994 Quasi exactly solvable 2 x 2 matrix quations J. Math. Phys. 35 3089–98 [2] Cotton É 1900 Sur les invariants différentiels de quelques équations aux dérivées partielles du second ordre Ann. E´cole Normale 17 211–44 [3] Finkel F, González-López A and Rodr´ıguez M A Quasi-exactly solvable spin 1=2 Schr¨odinger operators J. Math. Phys. in press [4] Finkel F and Kamran N On the equivalence of matrix valued differential operators to Schrödinger form J. Nonlin. Math. Phys. in press [5] Finkel F and Kamran N 1996 The Lie algebraic structure of differential operators admitting invariant spaces of polynomials Preprint q-alg/9612027 [6] González-López A, Kamran N and Olver P J 1991 Quasi-exactly solvable Lie algebras of first order differential operators in two complex variables J. Phys. A: Math. Gen. 24 3995–4008 [7] González-López A, Hurtubise J, Kamran N and Olver P J 1993 Quantification de la cohomologie des algèbres de Lie de champs de vecteurs et fibr´es en droites sur des surfaces complexes compactes C.R. Acad. Sci. (Paris) 316 1307–12 [8] González-López A, Kamran N and Olver P J 1996 Real Lie algebras of differential operators and quasi-exactly solvable potentials Phil. Trans. R. Soc. Lond. A 354 1165–93 [9] Kamran N and Olver P J 1990 Lie algebras of differential operators and Lie-algebraic potentials J. Math. Anal. Appl. 145 342–56 [10] Lie S 1880 Theorie der Transformationsgruppen Math. Ann. 16 441–528
dspace.entity.typePublication
relation.isAuthorOfPublication207092a4-0443-4336-a037-15936f8acc25
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublicationd781a665-7ef6-44e0-a0da-81f722f1b8ad
relation.isAuthorOfPublication.latestForDiscovery207092a4-0443-4336-a037-15936f8acc25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Finkel37preprint.pdf
Size:
201.74 KB
Format:
Adobe Portable Document Format

Collections